
AJBAR Vol 1(1), 2022: 55-64, ISSN: 2811-2881

 Arid Zone Journal of Basic and Applied Research

Faculty of Science, Borno State University

Maiduguri, Nigeria

Journal homepage: https://www.azjournalbar.com

Research Article

Performance Comparison of three Sorting Algorithms Using

Shared Data and Concurrency Mechanisms in Java

1*Abbas M. Rabiu, 2Etemi J. Garba, 3Benson Y. Baha, 2Yusuf M. Malgwi and 1Mu’azu Dauda
1 Department of Computer Science, Federal University Dutse, Nigeria

2 Department of Computer Science, Modibbo Adama University of Technology Yola, Nigeria
3Department of Information Technology, Modibbo Adama University of Technology, Yola, Nigeria

*Corresponding Author: mambas86@fud.edu.ng

ARTICLE INFO:

Keyword:
Algorithms,

Atomicity,

Running time,

Performance,

Sorting

ABSTRACT

Sorting large data sets or database is a problem commonly found in

Computer Science and to find a solution to this problem, several quick-

sorting algorithms were developed while some need to be improved

upon to make them more efficient. Sorting algorithms can be developed

using both shared and non-shared data based on programmers' choices.

This paper aimed to develop three distinct sorting algorithms that

involved shared data using three concurrency mechanisms in Java to

measure their running times and to compare their performances. The

main method used is the practical measurement of running times using

benchmarking carried out on a machine with eight (8) processing cores. System current Time Millis () was

used to measure time during the experiment. The results show that SD-Parallel quick sort implementation

using Atomicity outperforms the other two algorithms. It was also shown that creating more threads leads to

overhead when algorithms are developed using shared data. It was concluded that the running times of

algorithms that involved shared data increase with the increase in the array size when proper synchronization

is performed It was further revealed that SD-Parallel quick sort implemented using Acyclic-Barrier emerged

as the second-best algorithm. Other concurrency mechanisms namely: Phaser, and Double-Atomicity

provided by other Java JDK versions have the capacity of building more efficient framework that can be

used to improve the performance of these algorithms due to their dynamic functionality. These and other

concurrency mechanism provided by Java deserves further investigation as they are also capable of building

more efficient algorithm

Corresponding author: Abbas M. Rabi’u, Email: mambas86@fud.edu.ng

Department of Computer Science, Federal University Dutse

mailto:mambas86@fud.edu.ng
mailto:mambas86@fud.edu.ng

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

56

INTRODUCTION

Sorting a large data set or database is a problem

commonly found in Computer Science and to find

a solution to this problem, several quick-sorting

algorithms were developed while some need to be

improved upon to lower their running times and to

increase their speeds to make them more efficient

(Rabiu et al., 2018; Sengupta et al., 2007).

Performance comparison between the "Grouping

Comparison Sort (GCS)" and some conventional

algorithms namely: Quicksort, Insertion sort,

Selection sort, Merge sort and Bubble sort were

carried out by considering their execution time

(Khalid et al., 2018). A similar experiment was

conducted where five different versions of sorting

algorithms namely; Selection, Bubble, Quick,

Merge, and Insertion sorts were compared (Naeem

et al., 2016). Furthermore, five different sorting

algorithms namely: selecting sort, bubble sort

merge sort, insertion sort, and quick sort were

compared by summarizing their time and space

complexities (Yash & Anuj, 2020). Another study

was carried out by taking advantage of the

complexity and performance of the algorithm into

consideration. Additionally, a new complexity

analysis approach was proposed for the “DHS

algorithm” by considering the relation between the

input size and the identified domain of the inputs

(Hazem, 2019). An experimental analysis was

carried out to measure and compare the

performance of sorting algorithms that belong to

the On(log n) class by measuring their execution

times using a parallel approach (Mubashir, 2020).

Algorithm visualization was studied "using high-

level dynamic visualization of software that uses

user interface techniques to portray and monitor

the computational steps of algorithms". The

experimental approach was the main method used

(Jamil et al., 2020). A comprehensive review of

some selected machine algorithms was carried out

by Yahaya et al. (2020), these algorithms are used

to predict cardiovascular disease and their

performances were compared. Comparison of

bubble sorts and selection sort algorithms was

carried out using benchmarking methods

(Muhammad et al., 2017). Another comparative

study on sorting algorithms using an experimental

approach was carried out by (Suleiman, 2013). A

recent study compares Insertion sort, merge sorts

and quick sorts were compared by considering

their time complexities. Data of different sizes

were used to implement them in Java (Dinesh,

2021).

Nowadays applications in all segments of

computing, including some embedded systems are

getting more complex, because of the increased

range of functionality they offer. This complexity

requires platforms with increased performance

that satisfies such growing computational

demands. This need has driven the adoption of

multi-core processors in embedded systems since

they allow performance to be increased at

reasonable energy consumption (Hazem, 2017).

“The majority of applications used today were

written to run on only a single processor, failing to

use the capability of multi-core processors (Rabiu

et al., 2021)”. Although software development

firms are capable of developing software that

utilizes the multi-core processing machine to the

fullest capacity, the problem being faced by these

firms is how to upgrade legacy software programs

that have been developed many years ago to multi-

core software programs (Dempsey, 2014).

According to Göetz et al. (2006) overheads can

also result in degradation of the performance of

algorithms and concurrent software in general.

The literature reviewed so far focused on

developing sorting algorithms using non-shared

data without the need for synchronization.

However, in this paper, three different sorting

algorithms were developed by implementing three

distinct frameworks using shared data to measure

their running times and to compare their

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

57

performances on an octa-core machine. Table 1

and Figure 1 present a description of some popular

and known sorting algorithms based on their time

complexity, size of the input data, and the memory

required.

 Table 1: Description of some popular sorting algorithms based on their complexities

S/No. Name Concurrent

Mechanism

Complexity

1. SD-quick-sort Sequential

framework

This is a sequential algorithm that sorts an item

sequentially one after another and in sequence. Its time

complexity grows in the order of n squared. (O𝑛2).

More information about the complexity of sequential

quick sorts can be found in Ahmed and Zirra (2013);

Dinesh (2021).

2. SD-Parallel quick sort Atomicity

This is a parallel quick sorting algorithm implemented

using concurrency mechanisms called Atomicity. The

complexity of Parallel Quick sorts growth in the order

of n times log of n (i.e. 𝑂(𝑛𝑙𝑜𝑔𝑛), (Rabiu et. al., 2018:

Ahmed & Zirra, 2013)

3. SD-Parallel quicksort Acyclic-

Barrier

This is another parallel implementation of quicksort

based on Acyclic-Barrier. Similarly, its complexity

grows in the order of n times log of n (i.e. 𝑂(𝑛𝑙𝑜𝑔𝑛),

(Ginanjar, 2021; Rabiu et. al., 2021).

4. QuickSortParalNaive Naïve This is another parallel implementation of quicksort

based on the Naïve framework. When this faction is

called, a new thread is created for each recursive call. It

has the complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛), (Rabiu et al., 2020;

Dinesh, 2021).

5. QuickSortForkJoin Fork-join This works based on the divide and conquer approach

to problem-solving. Like other popular algorithms, its

time complexity also grows in the 𝑂(𝑛𝑙𝑜𝑔𝑛), (Rabiu et

al., 2020; Ginanjar, 2021; Niraj and Rajesh, 2019).

Figure 1: Description of some popular sorting algorithms (Anonymous, 2021)

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

58

METHODOLOGY

Array Data Structure

The data structure specified for developing the sorting

algorithm in this paper is the array data structure. The

data structure contains positive integer data types,

ranging from 1 to 10 million elements that were used

to carry out sorting in this paper. Several test runs

were used to enable us to test different array sizes and

to also reduce the effects of background programs on

the measured time.

Loop Creation

Having defined our data structure, the next step after

specifying the data size of the array is creating a loop

that takes two parameters namely: The "seed" for

generating random values, and the required “array

size”. After each iteration, the size of the “seed”

remains the same but the array size is varied.

Hardware Specification

The following hardware specifications were used for

experimentation and benchmarking in this paper. An

octa-core computer with 2.5 GHz CPU cores was used

for the benchmarking. The system runs Windows 10,

64 bits (OS).

Software Specifications

All concurrency mechanisms used to develop

frameworks and algorithms in this paper were

provided by Java. Some tools are thread pools used to

create and manage threads, some frameworks used to

synchronize threads, and to carry out tasks executions.

Others are locks, atomic operations, counting

semaphores as well as some condition variables.

Running times Measurements

System.currentTimeMillis() method was used to

measure running times during benchmarking in this

paper. System.currentTimeMillis() method returns a

measured time in milliseconds. It gives a difference

between the current time and the mid-January, 1970

UTC. System.currentTimeMillis() is faster than

System.nanoTime() which makes it a better choice to

measure time in this paper.

Data Analysis tool

Graph-Pad prism version 9.3.1 was used to plot all the

graphs in this paper. With this tool, a logarithmic

scale, linear scale, and natural log scale can be

selected depending on the user’s choice and the nature

of the data to be analyzed. In this paper, a logarithmic

scale was used to plot all the graphs due to the large

size of our data.

RESULTS

Framework Testing Using Algorithm with Share

Data on an Octa-core Machine

In this section, three frameworks were developed to

implement algorithms that involved shared data.

Comparing algorithms developed using different

frameworks that involve shared data enables us to test

different implementations of the concurrency

mechanism. It will also enable us to see the effects of

synchronizations of threads among different

processing cores to optimize the performances of

these algorithms. Table 2 and Figure 2 described the

running times of SD-quick-sort implementation using

shared data tested on an 8-core processor machine

Table 2: Depicting the running times of SD-Quick-sort sequential on an octa-core machine

Number of elements Running times (ms)

1000 0.00

10000 1.00

100000 1.20

1000000

10000000

7.10

3.00

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

59

102 103 104 105 106 107 108

0

2

4

6

8

Number of elements

R
u

n
n

in
g
 t

im
es

 (
m

s)

Figure 2: Describing the running times of SD Quick sort sequential on an octa-core

machine

SD-Parallel Quicksort Using Atomicity on an Octa-core Machine

Here, a parallel quicksort namely: SD-Parallel quick sort was implemented using the

Atomicity framework. The results are described in Table 3 and Figure three respectively.

Table 3: Describing the running times of SD-Parallel quick sort using atomicity an octa-

core

Number of elements Running times (ms)

1000 0.00

10000 9.50

100000 11.2

1000000

10000000

0.20

0.40

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

60

102 103 104 105 106 107 108

0

5

10

15

Number of elements

R
u

n
n

in
g

ti
m

es
 (

m
s)

Figure 3: Describing the running times of SD-Parallel quick sort using atomicity an octa-

core

Test Runs of SD-Parallel Quicksort Using Acyclic-Barrier

Here, another parallel quicksort was implemented and tested using the Acyclic-Barrier

framework. The results are presented in Table 4 and Figure 4 respectively.

Table 4: Describing the running times of SD-Parallel quicksort using Acyclic-Barrier

Number of elements Running times (ms)

1000 0.10

10000 10.80

100000 11.10

1000000

10000000

0.60

0.20

102 103 104 105 106 107 108

0

5

10

15

Number of elements

Ru
nn

in
g

tim
es

 (m
s)

Figure 4: Showing the running times of SD-Parallel quicksort using Acyclic-Barrier

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

61

Comparison of all the Three Implementations of Algorithms on an Octa-core

Machine

As contained in Table 5 and Figure 5, the running times of all the three sorting algorithms

were compared on an octa-core machine.

Table 5: Performance comparison of all the three algorithms on an octa-core machine

Number

of

elements

SD-Quick-sort

Sequential

Running times

(ms)

SD-Quick-sort

Using Atomicity

Running times (ms)

SD-Quick-sort

Using Acyclic-

Barrier Running

times (ms)

1000 0.00 0.00 0.10

10000 1.00 9.50 10.80

100000 1.20 11.20 11.10

1000000 7.10 0.20 0.60

10000000 3.00 0.400 0.20

102 103 104 105 106 107 108

0

5

10

15

Number of elements

R
u

n
n

in
g
 t

im
es

 (
m

s)

SD-Quick-sort Sequential
Running times (ms)

SD-Quick-sort Using
Atomicity Running times
(ms)

SD-Quick-sort Sequential
Running times (ms)

Figure 5: Describing the performance comparison of all the three algorithms on an octa-

core machine

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

62

DISCUSSION

From Table 2 and Figure 2, it can be seen that the

running times of SD-quick sort increase with the

increase in the number of elements. While sorting

10,000 array elements, a running time of 1ms was

obtained. At the end of the sorting process, when the

array size reached 10,000,000 elements, a running

time of 3ms was obtained. Therefore, the running

times of algorithms with shared data increase with

the increase in the array size with proper

synchronization put in place. This is similar to the

findings in (Rabiu et al., 2021; Ahmed and Zirra,

2013). From the running times obtained in Figure 2

and Figure 3, it can be seen that there was a

performance problem when the number of elements

is less than 50,000. The decrease in the performance

recorded using an octa-core processing machine is

significantly higher with the set threshold value. As

there were more threads created for a small number

of elements, the performance of these algorithms is

negatively affected. Thus, it was revealed that

creating more threads leads to more overheads.

Another possible reason for this poor performance

is that some part of the codes was run sequentially

as defined by Amdahl's law. Figure 4 and Table 4,

it can be observed that the running times of this SD-

Quick-sort using the Acyclic-Barrier framework

increases with the increase in the array size until

when the running times reached 11.10ms before the

performance started improving. A running time of

0.2ms was recorded at the end of the sorting process

when the number of elements reached 10,000,000.

The reason for this poor performance is that, as the

array exceeded the set threshold value, the effects of

overheads become noticeably higher.

From Figure 5 and Table 5, a performance

comparison of all the three algorithms was carried

out. It can be observed that their running time rises

slowly but it finally settled down as the size of the

array increases. It is clearly shown that the set

threshold of 50,000 sizes does not suit SD-Parallel

quicksort implementation. It can be observed that

when the array sizes reach 10,000 elements; SD

quick-sort immerged as the best sorting algorithm.

This is because Sequential SD-quick sort does well

on smaller array sizes. This is following the findings

made by Suleiman (2013). However, when the array

increases to 100,000 elements, SD-quick sorts

implementation using Atomicity becomes the best

algorithm throughout the sorting process until the

size of the array reached 10,000,000 elements. This

is also following the findings made by Dinesh

(2021). This good performance is a result of better

synchronization mechanisms with which Atomicity

is built up. Similarly, as observed when testing these

algorithms with a high processing machine (octa-

core), it is revealed that a threshold of 50,000

elements does not suit SD-Parallel quick sort

implementations. Therefore, a larger threshold

value could have been better with this

implementation with a little increase in the number

of threads. Finally, it was further revealed that SD-

Parallel quick sort implementation using Acyclic-

Barrier outperforms emerged as the second-best

algorithm. This is because of the dynamic nature of

the Acyclic-Barrier framework.

CONCLUSION

This study measured and compared the performance

of three distinct algorithms using shared data. Each

of the algorithms was developed using a different

concurrency framework in Java. It was revealed that

SD-Parallel Sequential does well on a small number

of elements. It was further revealed that the SD-

Quick sort developed using Atomicity is the best

algorithm when sorting a large number of elements.

SD-Quick sort using Acyclic-Barrier emerged as the

second-best when measured on a large number of

elements. This paper used a limited number of

concurrency mechanisms namely: Sequential,

Atomicity, and Barrier-Acyclic to develop an

algorithm using shared data. Other mechanisms,

such as Phaser, and Double Atomicity provided by

other JDK versions can be further tested as they are

also capable of building a more efficient framework

due to their dynamic functionality. These and other

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

63

recent concurrency tools provided by Java deserve

further investigation to determine their

performance.

REFERENCES

Ahmed, M. & Zirra, P. (2013). A comparative

analysis of sorting algorithms on integer and

character arrays. International Journal of

Engineering and Science 2(2), 25-30.

Ananymous, (2021). Most popular sorting algorithms

[jpg]. Available at:

https://www.google.com/search?q=most+pop

ular+sorting+algorithms&tbm=isch&chips=q

:most+popular+sorting+algorithms,online_ch

ips:quicksort:g7QfdGMisjU%3D&rlz=1C1I

BEF_enNG937NG937&hl=en&sa=X&ved=

2ahUKEwjD6LvBtuH1AhW4iv0HHWTSA8

8Q4lYoBnoECAEQJw&biw=1263&bih=689

#imgrc=Ki6YdWGEgGlStM&imgdii=IyQ4J

CQ3HIEitM

Dempsey, P. (2014). Monsters incapacitated multi-

core processors. Journal of Engineering

 & Technology 3(2), 38-41.

Dinesh B. (2021). Comparison between quicksort,

mergeSort, and insertion sort. Global Sceintific

Journal, 9(4), 2320-9186. Available at:

https://www.globalscientificjournal.com/resear

chpaper/Comparison_between_Quicksort_Mer

geSort_and_Insertion_Sort.pdf

Göetz, B., Peierls, T., Bloch, J., Bowbeer, J., David,

H., & Lea, D. (2006). Java concurrency in

practice. Addison: Wesley Professional, 1-10.

Hazem, A. A. (2017). Integrating data flow and non-

data flow real-time application models on

multi-core platforms [Doctorate Thesis],

Faculty of Engineering, Computer Engineering

University of Oporto, 1-144.

Hazem, M.B. (2019). Complexity analysis and

performance of double hashing sort algorithm.

Journal of the Egyptian Mathematical Society

27(3), 1-10.

Jamil, A., Jamil, A., Maslan, Z., Oliinyk, A., Azwan,

A. Rahman, A. I. & Zikri, A. B. (2020). The

development of a system for algorithms

visualization using sim java. ARPN Journal of

Engineering and Applied Sciences,15(24),

3024-3033.

Khalid S.A., Ibrahim, M.A., Abdallah, M.I. AlTurani

& Nabeel I.Z. (2018). Review on sorting

algorithms: A comparative study. International

Journal of Computer Science and Security, 7

(3). 110-120.

Mubashir, A., Harsha, N., Wajid A., Aamir, H.,

Nosheen, K.M. & Khalid, P. (2020).

Experimental analysis of On(log n) class

parallels sorting algorithms. International

Journal of Computer Science and Network

Security, 20(1), 139-140.

Muhammad, R. A., Harith Z., Farouk S. & Dauda B.

(2017). Comparison of bubble sort and

selection sort with their enhanced versions.

Department of Electrical Engineering

University of Lahore, Pakistan. 1-10.

Naeem, A., Muhammad, I., & Furqan, R. (2016).

Sorting algorithms: A comparative study.

International Journal of Computer Science

and Information Security, 14(12), 930-940.

Available at:

https://sites.google.com/site/ijcsis/.

Niraj, K. M. and Rajesh S. (2019). Performance

comparison of sorting algorithms based on

complexity. International Journal of Computer

Science and Information Technology Research

2(2), pp. 394-398.

Rabiu, A.M., Garko, A.B. & Abdullahi, A.M. (2018).

Effects of multi-core processors on linear

and binary sorting algorithms. Dutse Journal

of Pure and Applied Sciences 4(2). Available

at http://fud.edu.ng/journals.php, 130-140.

Rabiu, A.M., Garko, A.B., Abdullahi, A.M, Umar,

H.A., & Babagana, M. (2018). Performance

evaluation of three quick-sorting algorithms

on single and multi-core processors.

Dutse Journal of Pure and Applied Sciences

https://www.globalscientificjournal.com/researchpaper/Comparison_between_Quicksort_MergeSort_and_Insertion_Sort.pdf
https://www.globalscientificjournal.com/researchpaper/Comparison_between_Quicksort_MergeSort_and_Insertion_Sort.pdf
https://www.globalscientificjournal.com/researchpaper/Comparison_between_Quicksort_MergeSort_and_Insertion_Sort.pdf

 *A. M. Rabiu, E. J. Garba, B. Y. Baha, Y. M. Malgwi and M. Dauda ISSN: 2811-2881

64

4(2). Available at

http://fud.edu.ng/journals.php, 254-263.

Rabiu, A.M., Garba, E.G., Baha, B.Y. & Mukhtar,

M.I. (2020). Optimizing frameworks for

building a more efficient concurrent

application in Java. Islamic University

Multidisciplinary Journal (IUMJ) 7(2): 348-

355. Available online:

https://www.iuiu.ac.ug/iumj/ArticleDetails.as

px?jid=14&did=254

Rabiu, A.M., Garba, E.G., Baha, B.Y. & Mukhtar,

M.I. (2021). Comparative Analysis Between

selection sort and merge sort algorithms.

Nigerian Journal of Basic and Applied

Sciences (NJBAS), 29(1), 48-53.

Sengupta et al. (2007). Algorithms in java (3rd ed.).

New York: Wesley. Retrieved from:

http://www.quora.com/

Suleiman, A. K. (2013). Review on sorting

algorithms: A comparative study.

International Journal of Computer Science

and Security (IJCSS), 3(7):120-126.

Yahaya, L., Hassan, I. & Rabiu, A.M. (2020). A

survey of the performance of some selected

machine learning algorithms for

cardiovascular disease predictions. Journal of

Science and Technology 4(1), 165-180.

Yash, C. & Anuj, D. (2020). Different Sorting

Algorithms comparison based upon Time

Complexity. International Journal of

Research and Analytical Reviews (IJRAR)

7(3).

http://www.quora.com/

