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ABSTRACT 

 
Dietary exposure to toxic metals has been identified as a risk to human 

health due to large amounts of these metals disposed of in the 

environment either as industrial waste or other sources due to human 

activities. In this study, three species of fishes (Tilapia zilli, Clarias 

lazera and Barbus lagoensis) were obtained, air-dried, milled and 

digested. The digested samples were analyzed for cadmium, chromium, 

lead and mercury using atomic absorption spectrophotometer (AAS). 

The results of the analysis showed that the concentration of cadmium 

in Tilapia zilli (0.0088mg/kg) and Barbus lagoensis (0.5134mg/kg) 

were higher than the maximum permissible level (0.003mg/kg) of 

cadmium in food and water. Similarly, chromium concentration 

in Barbus lagoensis (0.069mg/kg) was higher than the permissible level 

(0.05mg/kg). Also, concentrations of lead in Clarias 

lazera (0.019mg/kg) and Barbus lagoensis (0.0739mg/kg) were above 

the maximum permissible level (0.01mg/kg) in food and water as 

recommended by the standard organization of Nigeria. The findings also 

revealed that mercury concentration in Tilapia zilli (0.0058mg/kg) was 

high and above the maximum permissible level (0.001mg/kg) stated in 

SON regulations. This study confirms the increased danger of 

consuming fish that is contaminated with these heavy metals, and if it is 

allowed to continue, long-term exposure may lead to kidney failure and 

other diseases associated with these heavy metals. Proper monitoring and 

enforcement by regulatory agencies are required. 
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INTRODUCTION  

Fish is one of the aquatics, cold-blooded 

vertebrates covered with scales and 

consists of two paired fins, and several 

unpaired fins that obtain oxygen through 

the gills. There are different types of fish 

with varieties of shape, size and colour. 

Fish is one of the most readily available 

sources of animal protein in the diet, 

especially for rural dwellers (Olaleye & 

Adesina, 2021). Heavy metals are a group 

of elements with diverse definitions. Some 

are necessary for human growth and 

development, such as iron, cobalt, copper, 

manganese, molybdenum and zinc. There 

is no clear evidence that other inorganic 

heavy metals like – lead, cadmium, arsenic, 

chromium etc. – serve any purpose in the 

human body, but they are known for direct 

effect on the kidneys and they are 

particularly nephrotoxic, even at “normal” 

levels (Sabatha & Robles-Osoriob, 2013). 

The study of the effects of heavy metals 

toxicity on humans has become very 

essential in the last 50 years, given that 

large amounts of these products were 

disposed of by the environment either as 

agricultural waste or other sources due to 

human activities, and they are non-

biodegradable over long periods. For this 

reason, even though strict regulations are 

enforced mainly to limit the disposal of 

heavy metals, high levels of these elements 

are still present in the soil, sediment and 

water, resulting in chronic exposure to the 

general population (Sabatha & Robles-

Osoriob, 2013). Exposures of heavy metals 

by humans have been the main focus of 

attention among researchers, and health and 

nutrition experts due to their public health 

implications (Otitoju, 2012). Heavy metals 

may naturally occur as part of the earth's 

crust. Various human activities could also 

be responsible for the distribution of heavy 

metals at different levels. Environmental 

pollution by heavy metals, even at low 

levels, and their long–term health effects 

are the predominant global health concerns. 

Most of these heavy metals have long 

deleterious effects due to their non-

biodegradable nature, and long biological 

half-lives and therefore can accumulate in 

different parts of the body. Fish is one of 

the cheap and readily available sources of 

protein in developing countries such as 

Nigeria. This research is therefore aimed at 

investigating the levels of the selected 

heavy metals in Tilapia zilli, Clarias 

lazera and Barbus lagoensis (samples A, B 

and C) and the effects of consuming them 

on humans.
MATERIALS AND METHODS 

Sample Collection  

Three species of fish samples (Tilapia zilli, 

Clarias lazera and Barbus lagoensis) were 

obtained from Hadejia River, Jigawa State, 

Nigeria. The samples collected were washed, 

dissected and air-dried, the dried samples were 

milled using a pestle and mortar and then kept 

for further treatment (digestion). All chemicals 

used for this analysis were of analytical grade, 

obtained from both chemistry and biochemistry 

Department laboratories, Federal University 

Dutse, Jigawa State, Nigeria. 

 

Sample Digestion and Analysis 

The fish samples were digested following the 

methods described by Allen et al., (1991) 

and also by Akinola et al., (2011). 1g of the 

milled fish samples was weighed into a 

beaker using weighing balance. 3ml of 60% 

hydrochloric acid and 10ml of 70% 

trioxonitrate (V) acid were added to the fish 

samples. The beakers were then placed on 

laboratory hot plate for digestion until the 

white fumes coming from the beakers 

became brown. These digests were allowed 

https://www.revistanefrologia.com/en-renal-health-environment-heavy-metal-articulo-X2013251412001356#affb
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to cool and then filtered through a what 

man’s filter paper, leaving a whitish residue. 

The filtrates were then made up to 100ml 

using distilled water and stored for 

subsequent analysis. The digested samples 

were analyzed for Lead (Pb2+), Cadmium 

(Cd2+), Chromium (Cr2+) and Mercury 

(Hg2+) concentrations using Atomic 

Absorption Spectrometry (AAS). 

Absorbance values were measured from the 

AAS machine and the results were converted 

to actual concentrations of the 

aforementioned ions in the sample

RESULTS AND DISCUSSION 

The concentrations of cadmium (mg/kg) in three 

species of fish were presented in Table 1. The 

Table revealed that cadmium concentrations 

(mg/kg) of 0.0088 ± 0.08, 0.00 ± 0.00 and 0.5134 

± 0.363 were found in fish samples: T. zilli, C. 

lazera and B. lagoensis respectively. The mean 

levels of cadmium in B. lagoensis (0.5134 mg/kg) 

were comparatively higher than those in T. zilli and 

C. lazera. The mean level of cadmium in T. zilli  

 

 

and B. lagoensis (0.0088mg/kg and 0.5134 mg/kg 

respectively) were well above the maximum 

permissible level of cadmium in water and food 

(0.003 mg/kg) as stated by Standard Organisation 

of Nigeria (SON, 2019). However, the 

concentration of Cd in T. zilli was lower than the 

0.3mg/kg maximum permissible limit set by WHO 

(2007), 0.44-0.85mg/kg, 0.32-0.96mg/kg and 0.23-

1.05mg/kg in spinach, kholrabi and papaya (Uddin 

et al., 2019). 

Table 1: Concentrations of cadmium (mg/kg) in T. zilli, C. lazera and B. lagoensis 

Samples Mean ± S.D (mg/kg) Range (mg /kg) 

T. zilli 

 

C. lazera 

 

 B. lagoensis 

0.0088 ± 0.08 

 

0.00 ± 0.00 

 

0.5134 ± 0.363 

0.0008 – 0.0168 

 

0.00 

 

0.01504-0.6216 
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 Figure 1: Concentrations of cadmium in T. zilli, C. lazera and B. lagoensis 

The concentrations of chromium (mg/kg) in 

three species of fish were presented in Table 2. 

Concentrations of Cr in the three samples (T. 

zilli, C. lazera and B. lagoensis) were 0.0305 ±  

0.034, 0.0414 ± 0.026 and 0.069 ± 0.037 

respectively. The mean concentration of 

chromium in sample C (0.069 mg/kg) was 

comparatively higher than that in T. zilli and C. 

lazera.

Table 2: Concentrations of chromium (mg/kg) in Tillapia zilli, Clarias lazera and Barbus lagoensis 

Samples Mean ± S.D (mg/kg) Range (mg /kg) 

T. zilli 0.0305 ± 0.034 -0.0035 – 0.0645 

C. lazera. 0.0414 ± 0.026 0.0154 – 0.0674 

B. lagoensis 0.069 ± 0.037 0.032 – 0.06 
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Figure 2: Concentrations of chromium in T. zilli, C. lazera and B. lagoensis 

The lead concentrations in three species of fish 

are presented in Table 3. Lead concentrations 

of 0.0148 ± 0.026, 0.019 ± 0.017 and 0.0739 ±  

0.046 (mg/kg) were found in samples A, B and 

C respectively. The mean concentration of lead 

in B. lagoensis (0.0739 mg/kg) was higher than 

those in T. zilli and C. lazera.  

Table 3: Concentrations of lead in Tillapia zilli, Clarias lazera and Barbus lagoensis 

Samples Mean ± S.D (mg/kg) Range (mg /kg) 

T. zilli 0.0148 ± 0.026 -0.0112 – 0.0408 

C. lazera 0.019 ± 0.017 0.002 – 0.036 

B. lagoensis 0.0739 ± 0.046 0.0279 – 0.1199 

The mean concentration of lead in fish B. lagoensis (0.0739 mg/kg) was higher than the maximum 

permissible level of lead in water and food (0.01 mg/kg) according to the Standard Organisation of 

Nigeria (SON, 2019) standard.  Concentrations of Pb in this study were lower than 1.62 – 13.4mg/kg in 

vegetable samples in some parts of Bangladesh (Uddin et al., 2019) 3:00 – 4.00mg/kg in traditional 

herbal preparation in Northeast Ethiopia (Meseret et al., 2020). 
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Figure 3: Concentrations of lead in T. zilli, C. lazera and B. lagoensis 

 

Table 4 shows the concentration of mercury (mg/kg) in Tilapia zilli, Clarias lazera and Barbus lagoensis. 

The concentrations of mercury 0.0058 ± 0.010, 0.00 ± 0.00 and 0.00 ± 0.00 were found in fish samples A, 

B and C respectively. From the results, mercury was recorded 0.00mg/kg in Clarias lazera and Barbus 

lagoensis. 

Table 4: Concentrations of mercury in T. zilli, C. lazera and B. lagoensis 

Samples Mean ± S.D (mg/kg) Range (mg /kg) 

T. zilli 0.0058 ± 0.010 -0.0042 – 0.158 

C. lazera 0.00 ± 0.00 0.00 

B. lagoensis 0.00 ± 0.00 0.00 

Concentrations of Hg in this report were lower than 0.02mg/kg, 0.20 mg/kg and 0.02mg/kg maximum 

limits set by the European Union (2006), Chinese Department of Preventive Medicine (1994) and 

WHO/FAO (2007) respectively. This shows that the environment where the samples were taken is not 

contaminated with Hg. 

Lead 
Concentration 0.0

8 
0.073
9 0.0

7 

0.0
6 

0.0
5 

0.0
4 

0.0
3 

0.0
2 

0.01
9 0.014

8 
0.0
1 

 
Sample 
A 

Sample 
B 

Sample 
C 



 

42 

 

 

 

Figure 4: Concentrations of mercury in T. zilli, C. lazera and B. lagoensis 

However, the mean concentration of mercury in fish sample A (0.0058 mg/kg) was higher than the 

maximum permissible level of mercury in water and food (0.001 mg/kg) (SON, 2019). 

CONCLUSION 

The result of this research work indicates that 

concentrations of cadmium, chromium and 

lead are high in sample C (Barbus lagoensis). 

The concentration of mercury is high in 

sample A (Tilapia zilli) compared to the 

maximum permissible levels of these 

elements as recommended by the Standard 

Organisation of Nigeria (SON, 2018), Food 

and Agricultural Organisation (FAO, 2018) 

and World Health Organisation (WHO, 

2018). High levels of these metals in the fish 

samples place the consumers at high risk of 

renal failure with time unless proactive 

measures are taken. A high level of heavy 

metals in the fish samples is not desirable as 

it might be due to pollution of the 

environment. Further research is therefore 

needed to be conducted on the soil and water 

samples in the area to be sure whether or not 

the pollution is coming from the environment 

where the fishes reside. 
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