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ABSTRACT 

 
In quantum electrodynamics, the vacuum is not empty but has 

fluctuating fields which cause an orbiting lepton (electron or muon) to 

deviate from its quantum orbit and as a result, weaken its coupling with 

the nucleus, thus causing small changes in lepton energy states. 

Therefore, in this study, the quantum electrodynamics theory is then 

applied to determine qualitatively the mean square positions of an 

oscillating lepton by taking into account the vacuum fields and nuclear 

size effects. The first-order time-independent perturbation theory as an 

approximation method is applied to solve for the small changes in the 

nuclear-lepton interaction caused by the two effects. The general 

expression that can be applied to calculate the changes in lepton energy 

states is deduced and then applied to calculate numerically these effects 

on the energy states of single-electron and single-muonic atoms. The 

results showed the dependence of these effects on the principal 

quantum number n, the orbital quantum number l, the azimuthal 

quantum number m and the proton number Z. A more significant effect 

on s (l = 0) states of the large atomic nucleus and muonic atoms is 

observed. The obtained energy level corrections can be considered as 

additional energy level corrections that have to be investigated for 

reanalyzing the existing measured nuclear structure effects and for 

comparison with future spectroscopic investigations. Moreover, the 

new proposed formula would be suitable for calculating the energy 

level corrections in both muonic and electronic atoms caused by the 

fluctuating vacuum fields.  
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INTRODUCTION  

An atomic nucleus with nucleon number A is 

characterized by nuclear size, R = r0A1/3, with 

r0 being constant. This is a clear indication 

that isotopes could have different nuclear 

charge distributions and thus different energy 

states. This difference in energy states and the 

isotope shifts, which are predicted 

theoretically and observed experimentally, 

provides clear evidence for the finite-size 

nature of atomic nucleus. This contradicts the 

description of the atomic nucleus as being a 

point-charge having 1/r lepton-nuclear 

interaction. The the atomic nucleus is not truly 

point-charge (as described from the solution of 

Schrödinger or Dirac equation), rather has a 

finite-size charge distribution with some shape 

over which the proton charge is distributed 

(Palffy, 2011; Adamu and Ngadda, 2014; 

Adamu et al., 2018).  

The description of the atomic nucleus as being 

a finite size revealed other nuclear structures 

(for example nuclear radius) (Sirma et al., 

2020), spectral investigation (for example, 

hyperfine splittings and Lamb shift) and in 

solving the proton charge radius that puzzle 

scientist for decades (Faustov et al., 2014). 

Furthermore, Adamu and Ngadda, (2018) 

suggested that the nuclear radius can be 

determined based on its potential charge 

distribution and showed that the potential 

charge of the nucleus has exceeded the 

nucleon size by a factor √3.  

Another correction to point-charge 1/r nuclear 

potential is the deviation of orbiting lepton 

(electron or muon) from its quantum orbit as it 

interacts with fluctuating vacuum fields. This 

weakens the coupling of lepton with the 

nucleus and as a result affects its energy states 

(Borie and Rinker, 1982; Borie, 2014; 

Dalibard et al., 1982; Deck et al., 2005; 

Dyson, 2006; El Shabshiry et al., 2013; 

Erickson, 1977; Vaks, 1959; Venkataram, 

2013). The root-mean-square amplitude of the 

oscillation of electrons due to fluctuating 

vacuum fields was numerically calculated as 

about 1000th of the size of the electron orbit 

(Adamu et al., 2019). An investigation on 

spectral changes due to nuclear size and 

vacuum fields effects (see, for example 

(Adamu and Ngadda, 2014; Adamu and 

Ngadda, 2015; Palffy, 2011; El Shabshiry et 

al., 2015) showed that such corrections are 

very small and can be ignored for light 

nucleus and on p, d, f, … energy states and 

that the corrections are more important for 

higher atomic nucleus and muonic atoms. 

Being 207 times heavier than an electron (mμ 

= 207 me), and a distinctly small atomic 

orbitals radii, muonic atoms have an enhanced 

sensitivity to nuclear structure effects (Kanda, 

2022; Godunov and Vysotsky, 2013; 

Antognini, 2015; Dong et al., 2011; Toth et 

al., 2021; Antognini et al., 2022). Other 

nuclear parameters such as root-mean-square 

radii, electric quadrupole and magnetic dipole 

moments were also extracted based on 

theoretical predictions and experimental 

measurements of the level structure and the 

transition energies in muonic atoms (Patoary 

and Oreshkina, 2018; Faustov et al., 2019).  

Moreover, the analysis of spectroscopic x-ray 

measurements using muonic transitions 

revealed some anomalies and disagreements 

with previous theoretical predictions 

(Kardaras and Kosmas, 2015). The current 

experimental program to study the fine and 

hyperfine structure of the simplest muonic 

atoms is successfully measured in muonic 

hydrogen. The studies of the nucleon and 

nuclear structure based on light muonic atoms 

offer a new leap in precise determinations of 

the charge radii of the proton (Ji et al., 2016; 

Antognini et al., 2021) which disagreed with 

the previous determinations from the 

conventional methods of hydrogen 

spectroscopy and electron-proton scattering 

(Lensky et al., 2022). The understanding of 

this strong dependence of the muonic atoms 
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on nuclear parameters, and the information 

about atomic nuclei that they can deliver, has 

triggered interest in the precise knowledge of 

the level structure of muonic atoms 

(Oreshkina, 2022). Therefore, in this work, we 

adopt the assumption of a finite – size model 

of the atomic nucleus and consider the effect 

of fluctuating vacuum fields on orbiting 

leptons, and then applied time-independent 

perturbation theory, as an approximation 

method to determine the resulting lepton-

nuclear interactions and the subsequent energy 

levels changes. 

METHODOLOGY 

Based on the fact that the atomic nucleus is not a 

point-charge and that leptons interacting with the 

nucleus feel its finite-size and vacuum field’s 

effects, a simple expression that could generally 

describe these effects on single-electron – muon 

atomic nuclei is formulated by applying the first-

order time-independent perturbation. 

The Average Potential for Perturbed Electron  

As the result of its interaction with fluctuating 

vacuum fields, lepton deviates from its quantum 

orbit by an amount as shown in Figure 1. For such 

a small deviation, the average potential energy of 

the electron can be simplified using the Taylor 

expansion as: 

〈𝑈(𝑟 + 𝛿𝑟⃗ )〉 = 〈𝑈(𝑟)〉 + 〈𝛿𝑟〉 ∙ ∇⃗⃗ 𝑈(𝑟) 

+
1

2
〈(𝛿𝑟 ∙ ∇⃗⃗ )

2
〉 𝑈(𝑟) + ⋯ 

= 〈𝑈(𝑟)〉 + 𝑈′(𝑟) 

where 

𝑈′(𝑅) =
1

6
〈𝛿𝑟⃗ 

2
〉𝑡 ∇⃗⃗ 

2
𝑈(𝑅)   (1) 

 

is the perturbation due to vacuum fields 

fluctuations (Weisskopf, 1949) and the Laplacian 

of the potential ∇⃗⃗ 2𝑈(𝑅), is proportional to the 

extended nuclear charge distribution: 

 

 𝑈(𝑅) = −
𝑍𝑘𝑒2

𝑅
(
3

2
−

1

2

𝑟2

𝑅2)  

which an orbiting lepton interacts with.  

 

Figure 1: The oscillatory motion of an electron due to fluctuating vacuum fields (not to scale) 
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Thus, taking the Laplacian of the potential for the extended charge distribution, gives the following equation: 

∇⃗⃗ 2𝑈(𝑅) =
𝑍𝑘𝑒2

𝑅3     (2) 

The substitution of (2), equation (1) becomes: 

𝑈′(𝑅) =
𝑍𝑘𝑒2

6𝑅3
〈𝛿𝑟2〉𝑡   (3) 

where 〈𝛿𝑟2〉𝑡 is mean square position of an 

orbiting lepton. Equation 3 is the small 

perturbation felt by an orbiting lepton due to its 

interaction with the fluctuating vacuum fields. 

Since the perturbation is very small as compared 

with the nuclear potential, its solution can be 

sought by applying first-order time-independent 

perturbation theory (Yung-Kuo, 2000; Adamu and 

Ngadda, 2017; Adamu and Ngadda, 2014):  

Δ𝐸𝑛𝑙𝑚
(1)

= ∫𝜓𝑛𝑙𝑚
∗ 𝑈′(𝑅)𝜓𝑛𝑙𝑚𝑑𝜏                        (4) 

where the 𝜓𝑛𝑙𝑚 is the unperturbed normalized wave function and is given by 

𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = [(
2

𝑛𝑎0
)
3 (𝑛−𝑙−1)!

2𝑛(𝑛+𝑙)!
]
1/2

𝑒−𝛼𝑟/2(𝛼𝑟)𝑙𝐿𝑛−𝑙−1
2𝑙+1 (𝛼𝑟)Υ𝑙

𝑚(𝜃, 𝜙)                 (5) 

 

where 𝛼 = 𝑍/𝑛𝑎0, n = 1, 2, 3,… is the 

principal quantum number, l = 0, 1, 2, … (n – 

1) is the orbital angular momentum quantum 

number and m = 0, ±1, ±2, … ±l is the 

magnetic quantum number. Regular solutions 

exist for n ≥ l +1 and the lowest state with l = 

1 (called a 2p state) occurs only with n = 2. 

Thus, electrons can be grouped related to the 

quantum number n they occupy, such as 1s, 

2s, 2p, 3s, 3p, 3d, and so on (Das and 

Sidharth, 2015; House, 2018). 

Mean Square Fluctuation  

The mean square fluctuation of an orbiting 

lepton, 〈𝛿𝑟2〉𝑡, can be obtained from the 

principle of quantum electrodynamics and 

classical physics. Classically, the motion of a 

simple harmonic oscillator of frequency ω is 

considered to give a familiar form of the 

simple harmonic oscillator equation of motion 

(Venkataram, 2013): 

𝑑2𝑟

𝑑𝑡2 = −𝜔2𝑟    (6) 

This corresponds to classical equation of motion for the electron displacement (𝛿𝑟 )𝑘⃗  induced by a 

single mode of the field of wave vector 𝑘⃗  and frequency ω as: 

𝑚
𝑑2

𝑑𝑡2
(𝛿𝑟 )𝑘⃗ = −𝑒𝐸⃗ 𝑘⃗    (7) 

where the electric field 𝐸⃗  has components that are fluctuating with the wave vector 𝑘⃗ . The deviation 

of an orbiting lepton from its quantum orbit is now assumed from their harmonic motion under the 

influence of atomic nucleus, and thus, comparing (6) and (7) yields: 
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𝑚𝜔2𝛿𝑟0 = 𝑒ℇ0 

or 

𝛿𝑟0 =
𝑒

𝑚𝜔2
ℇ0 

Therefore, the mean square oscillation takes the form: 

〈𝛿𝑟0
2〉𝑡 =

𝑒2

2𝑚2𝜔4
〈ℇ0

2〉𝑡    (8) 

According to quantum electrodynamics, a vacuum is not empty but has fluctuating electric and 

magnetic fields present and their zeroth energy level is quantized as a harmonic oscillator as  

𝐸𝜔 =
ℏ𝜔

2
     (9) 

where ħω is the quantum of energy (Blatt, 2006; Evans and Eckardt, 2011; Dyson, 2006; 

Venkataram, 2013; Genet et al., 201). However, the energy of fluctuating electric and magnetic fields 

ℇ and ℋ respectively, is given by:   

𝐸𝜔 =
1

8𝜋
∫(ℇ2 + ℋ2)𝑑𝜔 =

ℇ0
2

4𝜋
Ω                    (10) 

where for a set of plane waves, 〈ℇ2〉𝑡 = 〈ℋ2〉𝑡 (Dyson, 2006). By comparing (9) and (10), the 

fluctuating fields take the value: 

ℇ0
2 =

2𝜋

Ω
ℏω           (11) 

Equation 11 represents the quantization of vacuum fields as harmonic oscillator. Therefore, using 

(11), the mean square oscillation (8) becomes: 

〈𝛿𝑟0
2〉𝑡 =

𝜋

Ω

ħ𝑒2

𝑚2𝜔3                      (12) 

The mean square fluctuation is the result of non-coherent action of all components of the field: 

〈𝛿𝑟 2〉𝑡 = ∫〈𝛿𝑟0
2〉𝑡𝜌0(𝜔)𝑑𝜔                                   (13) 

where 

               𝜌0(𝜔) =
Ω𝜔2

2𝜋2𝑐3                (14) 

is the spectral density of the zero-point radiation (Marshall, 1963; Boyer, 1975; Faria et al., 2006). 

The full mean square fluctuation in vacuum fields is obtained by substituting (12) and (14) into (13) 

as follows: 

〈𝛿𝑟 2〉𝑡 =
ℏ𝑒2

𝜋𝑚2𝑐3
ln (

𝜔2

𝜔1
) 

With the approximations: 

𝜔1 =
𝐸𝑛

ℏ
=

(𝑍𝛼)2𝑚𝑐2

2ℏ𝑛2
 

𝜔2 =
𝐸𝑇

ℏ
=

𝑚𝑐2

ℏ𝑛2
 

one can evaluate the integral and have the mean square oscillation as 

〈𝛿𝑟 2〉𝑡 =
ℏ𝑒2

𝜋𝑚2𝑐3 ln [
2

(𝑍𝛼)2
]   (15) 

 



Aliyu Adamu* and Y. H. Ngadda                                                                                   ISSN: 2811-2881 

141 

 

where α = e2/ћc is the fine structure constant and Z is the nuclear charge (Adamu, 2016; Adamu et. 

al., 2020). The perturbation (3) of the perturbed leptons is obtained by substituting the value of mean 

square oscillation 〈𝛿𝑟 2〉𝑡 of orbiting lepton (14) and presented as:   

 

𝜆𝑈′(𝑅) =
𝑍𝑘𝑒4ℏ

6𝑅3𝜋𝑚2𝑐3 ln [
2

(𝑍𝛼)2
]  (16) 

 

The shift of the energy level of finite sized nuclear due to vacuum fields’ effect in the state nlm is 

calculated from the first order time-independent perturbation theory as: 

Δ𝐸𝑛𝑙𝑚
(1)

=
𝑍𝑘𝑒4ℏ

6𝑅3𝜋𝑚2𝑐3 ln [
2

(𝑍𝛼)2
] ∫ |𝜓𝑛𝑙𝑚|2𝑟2𝑑𝑟

𝑅

0
      (17) 

where for r ≪ a0, e-Zr/a0 ≈ 1 and the 

normalized wave functions are assumed to 

be constant over the region of integration. 

Thus for an extended nuclear charge 

distribution and the disturbances of orbiting 

leptons by vacuum fields fluctuations, the 

resulting nuclear-lepton interaction is solved 

using approximation methods and the small 

energy levels changes caused by the 

fluctuating vacuum fields is calculated using a 

computer programs (Microsoft Excel).  

 

 

RESULTS AND DISCUSSION 

The corrections for the states n = 1 (1s), n = 2 (2s2p) and n = 3 (3s3p3d), caused by the effect of vacuum 

fields on lepton bound to finite-size nucleus can be obtain using equation (17) and the normalized wave 

function (5) as follows: 

Δ𝐸100 = (
8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸1|

1
(

𝑅

𝑎0
)
0 

 (18a) 

Δ𝐸200 = (
8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸2|

2
(

𝑅

𝑎0
)
0 

 (18b) 

Δ𝐸210 =
3𝜋

2(80)
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸2|

2
(

𝑅

𝑎0
)
2
 (18c) 

Δ𝐸21±1 =
3𝜋

80
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸2|

2
(

𝑅

𝑎0
)
2
 (18d) 

Δ𝐸300 =
8

9
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸3|

3
(

𝑅

𝑎0
)
0 

 (18e) 

Δ𝐸310 =
1

15
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸3|

3
(

𝑅

𝑎0
)
2
 (18f) 

Δ𝐸31±1 =
1

2(15)
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸3|

3
(

𝑅

𝑎0
)
2
  (18g) 

Δ𝐸320 =
1

513
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸3|

3
(

𝑅

𝑎0
)
4
 (18h) 

Δ𝐸32±1 =
1

1624
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸3|

3
(

𝑅

𝑎0
)
4
  (18i) 

Δ𝐸32±2 =
1

175406
(

8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]
|𝐸3|

3
(

𝑅

𝑎0
)
4
   (18j) 
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where a0 = ћ2/me2 = 5.29 × 10-11 m and 𝑎𝜇 = 2.56 × 10-13 m is the Bohr radius for electronic and muonic atom 

respectively. The simple analytical expression of calculating the effect vacuum fields on finite sized nuclei we 

can deduce from equations (18a) to (18j) and generalized as 

   ∆𝐸𝑛𝑙𝑚
𝑒 = 𝐶𝑛𝑙𝑚𝛾𝑧

|𝐸𝑛
𝑒|

𝑛
𝜉𝑒
𝑙    (19) 

  ∆𝐸𝑛𝑙𝑚
𝜇

= 𝐶𝑛𝑙𝑚𝛾𝑧
|𝐸𝑛

𝜇
|

𝑛
𝜉𝜇
𝑙    (20) 

where 

        |𝐸𝑛
𝑒| =

𝑍2𝑒2

2𝑛2𝑎0
    (21) 

and 

|𝐸𝑛
𝜇
| =

𝑍2𝑒2

2𝑛2𝑎𝜇
    (22) 

are the ground state energy of electron and muon atoms respectively, the parameter, 

𝛾𝑍 = (
8

9𝜋
) (𝑍𝛼)3 ln [

2

(𝑍𝛼)2
]  (23) 

is the dimensionless factor and it varies with proton charge distribution. The scaling factors for electron and 

muon atoms are respectively,  

𝜉𝑒
𝑙 = (

𝑅

𝑎0
)
2 
      (24) 

and 

𝜉𝜇
𝑙 = (

𝑅

𝑎𝜇
)
2 

     (25) 

where R = r0A1/3, with r0 = 1.2 × 10-15m. The 

general expressions (19) and (20) can be applied to 

calculate the corrections in all the states (since the 

equation has terms γz, En, ξ land Cnlm that depend on 

Z, n, l and m respectively) of finite size of nucleus 

of single-electron and single-muon atoms. The 

values of scaling factor for single-electron and – 

muon finite-size nuclei are presented on Table 1, 

and the values of constant Cnlm for different 

quantum states n, l and m, are given in Table 2. The 

corrections of energy levels shift ∆Enlm in 1s, 2s, 2p, 

3s, 3p and 3d orbitals are calculated using equations 

(19) and (20) and the results are presented in Tables 

3 and 4. The scaling factor ξ and the constant Cnlm 

determine the magnitude of the corrections relative 

to the energy levels. For large n and thus l the 

values of ξ grow smaller which indicates the 

smaller corrections (Table 1). It can be observe 

from Table 1 that the value of γZ rapidly decreases 

with proton number, Z. The value of Cnlm increases 

from 2p1/2 to 2p3/2 energy state and decreases from 

2p1/2 to 3d5/2 states. The values of the constant Cnlm 

are also small for larger value of n, l and m. It can 

be observed from the Tables 3 and 4 that the 

corrections are more significant for s (l = 0) states. 

This is because the s states are more sensitive to the 

finite nuclear size effects than the p or d states. For 

2p states, the corrections in energy states ∆E21±1 are 

twice of that in ∆E210 energy states. Similarly, the 

values of the corrections in ∆E310 sate are twice the 

values in ∆E31±1 states.  

Table 1: The values of the scaling factor ξe and ξμ, and the dimensionless factor γz for various value of Z 

Nuclides AXZ ξμ (10-4) ξe (10-9) γZ (10-4) 
1H1 0.2304 51.458 115.88 
6Li3 0.4792 1.0704 24.762 
21Na11 1.1395 2.5451 8.4017 
107Ag47 3.0006 6.7017 0.0032 
151Eu63 3.6479 8.1472 0.0062 
203Pb81 4.3132 9.6333 0.0001 
235U92 4.6954 0.1048 0.0001 
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Table 2: The values of the constant Cnlm for various energy levels ∆Enlm of finite-size nucleus 

∆Enlm ∆E100 (1s1/2) ∆E200(2s1/2) ∆E210 (1p1/2) ∆E21±1(2p3/2) ∆E300(3s1/2) ∆E310 (3p1/2) ∆E31±1 (3p3/2) ∆E320 (3d5/2) ∆E32±1(3d7/2) ∆E32±2(3d9/2) 

Cnlm 1.0000 1.0000 0.0059 0.1179 0.8888 0.0714 0.0357 0.0019 0.0006 0.0000006 

Table 3: The corrections to energies of 1s 2s2p 3s3p3d states of single-electron atoms 
Nuclides 

AXZ 

The Energy Level Corrections, ∆Enlm (eV) 

∆E100 (1s1/2) ∆E200 (2s1/2) ∆E210 (1p1/2) ∆E21±1(2p3/2) ∆E300 (3s1/2) ∆E310 (3p1/2) ∆E31±1 (3p3/2) ∆E320 (3d5/2) ∆E32±1 (3d7/2) ∆E32±2(3d9/2) 
1H1 1.57 × 10-5 7.88 × 10-6 2.46 × 10-26 4.92 × 10-25 4.66 × 10-6 9.93 × 10-26 4.96 × 10-26 2.64 × 10-27 8.34 × 10-28 8.34 × 10-31 
6Li3 3.03 × 10-3 1.51 × 10-3 2.04 × 10-23 4.09 × 10-22 8.98 × 10-4 8.26 × 10-23 4.13 × 10-23 2.19 × 10-24 6.94 × 10-25 6.94 × 10-28 
21Na11 1.38 × 100 6.91 × 10-1 5.28 × 10-20 1.05 × 10-18 4.09 × 10-1 2.13 × 10-19 1.06 × 10-19 5.67 × 10-21 1.79 × 10-21 1.79 × 10-24 
107Ag47 9.72 × 102 4.86 × 102 2.57 × 10-16 5.14 × 10-15 2.88 × 102 1.03 × 10-15 5.19 × 10-16 2.76 × 10-17 8.73 × 10-18 8.73 × 10-21 
151Eu63 3.33 × 103 1.66 × 103 1.30 × 10-15 2.61 × 10-14 9.88 × 102 5.27 × 10-15 2.63 × 10-15 1.40 × 10-16 4.42 × 10-17 4.42 × 10-20 
203Pb81 9.10 × 103 4.55 × 103 4.98 × 10-15 9.95 × 10-14 2.69 × 103 2.01 × 10-14 1.00 × 10-14 5.34 × 10-16 1.68 × 10-16 1.68 × 10-19 
235U92 1.46 × 104 7.34 × 103 9.53 × 10-15 1.90 × 10-13 4.35 × 103 3.84 × 10-14 1.92 × 10-14 1.02 × 10-15 3.23 × 10-16 3.23 × 10-19 

Table 4: The corrections to energies of 1s 2s2p 3s3p3d states of single-muon atoms 
Nuclides 

AXZ 

The Energy Level Corrections, ∆Enlm (eV) 

∆E100 (1s1/2) ∆E200 (2s1/2) ∆E210 (1p1/2) ∆E21±1(2p3/2) ∆E300 (3s1/2) ∆E310 (3p1/2) ∆E31±1 (3p3/2) ∆E320(3d5/2) ∆E32±1 (3d7/2) ∆E32±2(3d9/2) 
1H1 2.21 × 10-2 1.11 × 10-2 4.98 × 10-12 9.95 × 10-11 6.57 × 10-3 7.18 × 10-3 3.59 × 10-3 1.91 × 10-4 6.03 × 10-5 6.03 × 10-8 
6Li3 3.83 × 101 1.91 × 101 1.65 × 10-6 3.31 × 10-5 1.13 × 101 1.11 × 102 5.59 × 101 2.97 × 100 9.39 × 10-1 9.39 × 10-4 
21Na11 2.35 × 106 1.17 × 105 4.63 × 100 9.27 × 101 6.97 × 105 9.22 × 106 4.61 × 107 2.45 × 105 7.75 × 104 7.75 × 101 
107Ag47 3.02 × 109 1.51 × 109 4.18 × 107 8.36 × 109 8.96 × 108 2.16 × 1012 1.08 × 1012 5.75 × 1010 181 × 1010 1.81 × 107 
151Eu63 1.86 × 1010 9.32 × 109 8.86 × 108 177 × 1010 5.52 × 109 2.39 × 1013 1.23 × 1013 6.37 × 1011 2.01 × 1011 2.01 × 108 
203Pb81 8.41 × 1010 4.26 × 1010 1.08 × 1010 2.17 × 1011 2.49 × 1010 1.78 × 1014 8.92 × 1013 4.75 × 1012 1.49 × 1012 1.49 × 109 
235U92 1.75 × 1011 8.75 × 1010 3.66 × 1010 7.32 × 1011 5.19 × 1010 4.79 × 1014 2.42 × 1014 1.28 × 1013 4.03 × 1012 402 × 109 

Table 5: The corrections to energies of 1s 2s2p 3s3p3d states of single-electron atoms 

Nuclei AXZ 
The Logarithmic Value of the Energy States ∆Enlm of Electron (eV) 

∆E100 (1s1/2) ∆E200 (2s1/2) ∆E210 (1p1/2) ∆E21±1(2p3/2) ∆E300 (3s1/2) ∆E310 (3p1/2) ∆E31±1 (3p3/2) ∆E320 (3d5/2) ∆E32±1 (3d7/2) ∆E32±2(3d9/2) 
1H1 -4.8024 -5.1035 -25.6087 -24.3080 -5.3307 -25.0029 -25.3040 -26.5779 -27.0785 -30.0785 
6Li3 -2.5184 -2.8195 -22.6885 -21.3878 -3.0467 -22.0828 -22.3838 -23.6577 -24.1583 -27.1583 
21Na11 0.1407 -0.1603 -19.2770 -17.9764 -0.3876 -18.6713 -18.9723 -20.2463 -20.7469 -23.7469 
107Ag47 2.9877 2.6867 -15.5891 -14.2884 2.4594 -14.9833 -15.2844 -16.5583 -17.0589 -20.0589 
151Eu63 3.5233 3.2223 -14.8838 -13.5832 2.9950 -14.2781 -14.5791 -15.8531 -16.3537 -19.3537 
203Pb81 3.9590 3.6580 -14.3026 -13.0019 3.4308 -13.6968 -13.9979 -15.2718 -15.7724 -18.7724 
235U92 4.1670 3.8660 -14.0209 -12.7202 3.6387 -13.4151 -13.7162 -14.9901 -15.4907 -18.4907 

Table 6: The corrections to energies of 1s 2s2p 3s3p3d states of single-muon atoms 

Nuclei AXZ 
The Logarithmic Value of the Energy States ∆Enlm of Muon (eV) 

∆E100 (1s1/2) ∆E200 (2s1/2) ∆E210(1p1/2) ∆E21±1(2p3/2) ∆E300 (3s1/2) ∆E310 (3p1/2) ∆E31±1 (3p3/2) ∆E320 (3d5/2) ∆E32±1 (3d7/2) ∆E32±2(3d9/2) 
1H1 -1.6539 -1.9550 -11.3025 -10.0019 -2.1822 -2.1438 -2.4449 -3.7188 -4.2194 -7.2194 
6Li3 1.5843 1.2833 -5.7803 -4.4796 1.0560 2.0487 1.7476 0.4737 -0.0269 -3.0269 
21Na11 5.3720 5.0709 0.6665 1.9672 4.8437 6.9649 6.6638 5.3899 4.8893 1.8893 
107Ag47 9.4804 9.1794 7.6220 8.9226 8.9521 12.3347 12.0337 10.7598 10.2592 7.2592 
151Eu63 10.2705 9.9694 8.9476 10.2483 9.7422 13.3793 13.0782 11.8043 11.3037 8.3037 
203Pb81 10.9245 10.6235 10.0374 11.3380 10.3962 14.2516 13.9505 12.6766 12.1760 9.1760 
235U92 11.2431 10.9420 10.5639 11.8646 10.7148 14.6808 14.3797 13.1058 12.6052 9.6052 
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Figure 2: The corrections to energies of 1s 2s2p 3s3p3d states of single-electron hydrogen-like atoms 

 

 
Figure 3: The corrections to energies of 1s 2s2p 3s3p3d states of single-muon hydrogen-like atoms 

 

An observation in Figures 2 and 3 showed that the 

effects of vacuum electromagnetic fields on finite-

size nuclei are more significant in the case of higher 

Z and muonic atoms. This comes as a result of the 

more overlap of muon states with finite-size nuclei 

than that of electron states. The nuclear finite-size 

corrections can be more important for higher atomic 

nuclei and muonic atoms, since for muon, mμ = 

207 me. A direct effect of the vacuum field 

fluctuations and its experimental verification 

constitutes strong support of quantum 

electrodynamics.  

The details of atomic spectra need many additional 

corrections including those due to quantum 

electrodynamics effects and nuclear structure 

effects (El Shabshiry et al., 2015). These 

corrections have to be investigated by several 

authors (see for example (Welton, 1948; Weisskopf, 

1949; Das and Sidharth, 2015) through the use of 

perturbation theory as an approximation method. 

The Quantum mechanics calculation of vacuum 

field fluctuations due to Bethe, (1947) and Welton, 

(1948) results in energy shifts: 

  

∆𝐸𝑛𝑙𝑚 = |𝐸𝑛|
8

3𝜋
𝛼3 𝑍2

𝑛
ln [

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
]   

The energy level shift due to vacuum field’s fluctuation was quantitatively formulated by Welton (1948) as: 
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∆𝐸𝑛𝑙𝑚 =
8

3𝜋

𝑍4𝛼5

𝑛3 𝑙𝑛 (
1

𝑍𝛼2)
𝑚

2
𝛿𝑙,0   

 

This energy shift corresponds to the frequency of f 

≈ 1000 MHz for hydrogen atom (Z = 1) when an 

electron is in n = 2 and l = 0 energy states (Das and 

Sidharth, 2015).  

By virtue of the modified Dirac equation, Das and 

Sidharth (2015) obtained the energy shift as  

 

 

corresponds to the frequency f ≈ 1056 MHz which 

is very nearly equal to the Lamb shift. From 

different perspectives, Peterman and Karshenboim, 

(1994) obtained such frequency f = 1057.911 ± 

0.011 MHz and 1057.8576(21) MHz respectively. 

Weisskopf, (1949) obtained the direct effect of 

vacuum field fluctuations as: 

 Δ𝐸𝑛 = |𝐸𝑛|
8

3𝜋
𝛼3 𝑍2

𝑛
log (

𝑓𝑚𝑐2

ℎ𝜈0
)   

and 

 Δ𝐸𝑛 = |𝐸𝑛|
8

3𝜋
𝛼3 𝑍2

𝑛
ln [

𝑓

(𝑍𝛼)2
]   

The energy shift δEn due to fluctuating vacuum fields was determined by Pardy, (2016) as: 

 𝛿𝐸𝑛 ≈
2

3𝜋2

𝛼3

𝑛2 ln (
𝜔2

𝜔1
)  

  

These values are so close to an outstanding triumph of both experimental and theoretical physics. 

 

CONCLUSION 

From the results obtained, we conclude that the 

newly proposed formula would be suitable for 

calculating the energy level corrections in both 

muonic and electronic atoms caused by the 

fluctuating vacuum fields and that the vacuum field 

fluctuations have more effect on higher Z and in  

 

 

muonic hydrogen-like atoms. The obtained energy 

level corrections calculated from the derived 

formula are an additional energy level correction 

that has to be investigated for reanalyzing the 

existing measured nuclear structure effects and for 

comparison with future spectroscopic 

investigations. 
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