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ABSTRACT 
 

Time series events are counted within time intervals usually for 

convenience and practical reasons. Time series data involving counts 

frequently follows Poison distribution. Integrated Autoregressive Moving 

Average (ARIMA) models were studied on simulated Poison data of 

different parameter and sample sizes. These models were used to capture 

Poison data with different phenomena. Data set were simulated from 

Poison process with                ARIMA (p, d, q) were then fitted 

to the simulated data so as to examine the effect of the changes in 

parameter value of the Poison on the models’ performance across the 

sample size. Thereafter, the same models were used to fit and forecast the 

daily Covid-19 data, confirmed cases from inception to February 2023. It 

was concluded that ARIMA (2, 1, 2) and ARIMA (1, 1, 1) are obviously 

the best Models at different sample sizes respectively. Based on the 

Covid-19 analysis, the estimated coefficient values of all ARIMA (p,d,q) 

strictly conforms to the bounds of the parameter between -1 and 1 and this 

had made the model to be stationary comparing the ARIMA models in 

terms of the AIC, BIC and MSE. It is clearly preferred ARIMA (1, 0, 2) to 

other models since their estimated AIC, BIC and MSE are smaller as 

compared to other models. The forecast is quite accurate, and hereby 

confirms what was expected. It seems that ARIMA (1, 0, 2) does a very 

good job in capturing the dynamic nature of the data and forecasting. It 

was observed that the confirmed cases increase, and then keep stationary 

throughout the future times. 
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INTRODUCTION 

Time series data involving counts frequently 

follows Poison distribution. This can be 

encountered in many biomedical and public 

health applications. For example, in disease 

surveillance, the occurrence of rare infections 

over time is often monitored by public health 

officials, and the time series collected can be 

used for the purpose of monitoring changes in 

disease activity. The primary objective of time 

series modeling is to study techniques and 

measures for drawing inferences from the past 

data. The models can be employed to describe 

and analyze the sample data and make forecasts 

for the future. The main advantage of time 

series models is that they can handle any 

persistence patterns in data (Abdullahi & 

Taytor, 2004). For time series, certain models 

are commonly known, like an Autoregressive 

Moving Average (ARMA) model. This method 

takes into account that past information 

influences the variables of today. For example, 

the rate of inflation of a few days ago influences 

the rate of inflation today. Or import and export 

data can be predicted by using information on 

how many is imported and exported in the past 

few months. Many examples can be given and 

these ARMA-models work pretty well in 

modeling the time series (Imam, 2020). 

One special class of time series model is 

ARIMA models which are often associated with 

Box and Jenkins (1976) for their effort to 

systematize the whole methodology of 

estimating, checking and forecasting using 

ARIMA models (Mahesh, 2005). The Box – 

Jenkins method consist of three steps: 

identification, parameter estimation and 

forecasting. Among these three steps, the 

identification step, which involves order 

determination of the AR and MA part of 

ARIMA model, is important. This step requires 

statistical information such as the 

autocorrelation and partial autocorrelation (Box 

and Jenkins, 1976). The problem of estimating 

the order and the parameters of an ARIMA 

model is still an active area of research. The 

Box and Jenkins Variant of the ARIMA model 

is predestinated for applications to non-

stationary after differencing. 

Amon et al. (2015) studied the impact of the 

size of the historical data on ARIMA models in 

formulating accuracy. The study used 286 

weekly records of amount of solid waste 

generated in Arusha city to formulate four (4) 

ARIMA models suing different data lengths or 

size. The first model, M1 used 30 observations 

the second model, M2 used 60 observations, the 

third model, M3 used 120 observations and the 

fourth mode M4 used 260 observations of which 

are the most recent. A total of 26 observations 

were held out for validation. The precision in 

forecasting was tested using MAPE, RMSE and 

MAD. The results indicated variation in 

precision, M3 performed best in one-week ahead 

and 9-12 weeks ahead while M4 performed 

better in 2-8 weeks and also for 13 weeks and 

above, M1 was the weak model in forecasting.  

Imam (2020) investigated the best ARIMA 

model for forecasting average daily share price 

indices of the series of square pharmaceuticals 

limited (SPL). After stationary test, the data was 

found to be not stationary; a differencing was 

carried out to obtain stationarity. The results 

indicated that the best ARIMA model was 

found to be ARIMA (2,1,2). The accurate 

prediction of foreign exchange is important as 

substantial amount of trading takes place 

through the currency exchange market. The 

prediction is affected by economic and political 

factors and also involves uncertainty and non-

linearity. Thus, accurate prediction of exchange 

rate is a complex task (Nwankwo, 2014). 

Volatility modeling of exchange rate has many 

practical applications in statistics, economics 

and finance.  

Hillmer and Tiao (1982) used ARIMA 

technique for the seasonal adjustment as well as 

introduce the decomposition of the time series 
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data into its mechanism like trend, seasonal and 

noise whereas such series will follow the 

assumption of the Gaussian ARIMA model. 

Hillmer and Tiao (1982) study the effectiveness 

of time series modelling (ARIMA) in 

forecasting stock prices. In their study, Fifty-Six 

(56) stocks from Seven (7) sectors were used. 

The accuracy of ARIMA model in predicting 

stock prices was evaluated. From the standard 

deviation of accuracy of forecasting of seven 

sectors, they found that Automobile sector, steel 

sector and the banking sector has a high 

standard deviation which means the values are 

spread over a large range, and there might be 

stocks for which ARIMA model does not 

produce good results. 

Studies by some authors have modeled time 

series count data but failed to consider a 

particular distribution and the effect of sample 

size on the different parameters of the Poison 

data. This study is aimed at modeling time 

series count data with emphasis to ARIMA 

Poisson data on confirmed cases of COVID19 

in Nigeria from inception to February 2023. 

METHODOLOGY 

Data set were simulated in R statistical software 

with sample sizes of 50, 100,…, 500 from 

Poison process of                      The 

four models under study, namely: ARIMA 

(1,d,1), ARIMA (1,d,2), ARIMA (2,d,1) and 

ARIMA (2,d,2) were then fitted to the simulated 

data so as to examine the effect of the 

proportion of changes in mean and sample size 

on them. Their performances were compared at 

different sample sizes and means of Poison 

distribution. Thereafter, the forecast 

performances of the four fitted models were 

also examined at different steps ahead. All cases 

of simulation were randomized and replicated 

1000 times each for the respective selected 

sample sizes. In simulation, we set our 

parameters to be    =   =   to ensure discrete 

nature of poison data generated. The response 

     were generated from Poisson distribution. 

The four models under study were considered to 

analyse how well each of the model fits the 

selected data sets. Data were generated from 

linear second orders of autoregressive functions 

given as follows: 

Model 1. AR(2):                                                                   

               .              

Where     were simulated from Poison as 

follows: 

The Poison regression model which is based on 

the Poisson distribution with probability density 

function  

       

   
       

                                                                                

 Thus, for the Poison models  (  )   (  )  

  . The restrictive condition that the mean must 

equal the variance is often violated by 

overdispersed data (where variance exceeds the 

mean). As a result of that Poison model is 

generally considered inappropriate for count 

data, which are usually highly skewed and over 

dispersed (Cameron & Trivedi, 2008). 

ARIMA Model 

Box-Jenkins ARIMA model has been used 

widely in many areas of time series analysis. 

Since ARIMA is among the earliest models, the 

capability of this model always being tested and 

widely used as a benchmark with other time 

series models. Box-Jenkins ARIMA is known 

as ARIMA (p,d,q) model where p is the number 

of autoregressive (AR) terms, d is the number of 

difference taken and q is the number of moving 

average (MA) terms. ARIMA models always 

assumes the variance of the data to be constant. 

The ARIMA (p,d,q) model can be represented 

by the following equation:  

 yt =  1 yt-1 + ... +  p yt-p +  t +  1  t-1 + ...+  q  t-q    (1)  
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Where  t   N (0, t
2
), p and q are the number of 

autoregressive and moving average terms  , 

respectively. The identification of modelling the 

conditional mean value is based on the analysis 

of estimated autocorrelation and partial 

autocorrelation (ACF, PACF). These estimators 

may be strongly inter-correlated. It is therefore 

recommended not to insist on unambiguous 

determination of the model order, but to try 

more models. We must not forget to carry out 

the verification, which is based on retrospective 

review of the assumptions imposed on the 

random errors.  

Transformation by Differencing 

Differencing is an important technique in 

transforming data, which attempts to de-trend to 

control autocorrelation and achieve stationary 

time series. The first difference is denoted as: 

            (   )    

Where B is the backshift operator. We may 

extend the notion further and define the 

differences of order d as:  

     (   )    

Usually, single differencing is used to remove 

linear trends and double differencing is used to 

remove quadratic trend. We can eliminate 

seasonality and trend of period d by introducing 

the lag d difference operator  d: 

             (    )   

Normally, the correct amount of differencing is 

the lowest order of differencing that yields a 

time series which fluctuates around a well-

defined mean value and whose autocorrelation 

function (ACF) plot decays rapidly to zero, 

either from above or below. Thus, at every stage 

of differencing, we check the plots of sample 

autocorrelation function (ACF) and the sample 

partial autocorrelation function (PACF) to see 

where the ACF/PACF “cuts off” the bounds 

±1.96 /n. It is desirable to find a sample ACF 

that decays fairly rapidly. We say that a series is 

stationary if the sample ACF has very few 

significant spikes at very small lags and then 

cuts off drastically or dies down very quickly. If 

the sample ACF dies slowly, the series still has 

some trend. If ACF has periodicity, the series 

has seasonality. We should do some more 

differencing of the data before continuing. 

DATA ANALYSIS AND RESULTS 

The sample of data generated at different 

categories and sample sizes are presented in 

graphs as discussed in the subsequent sections. 

The performances of the  ARIMA models [ 

ARIMA (1,1,1), ARIMA (1,1,2), ARIMA 

(2,1,1) and ARIMA (2,1,2)] and test of 

stationary are presented in Table 1- 12 . 

Furthermore, the data simulated were 

differenced. The experiment was repeated 1000 

times for the four models at each sample size.  

. 
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Figure 1a: Poison Data with λ = 5, and sample size n = 50 

 
Figure 1b: Poison Data with λ = 5, and sample size n = 100 

 
Figure 1c: Poison Data with λ = 5, and sample size n = 500 
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Table 1: ADF Test of Poison Data with λ = 5 at Different Sample Sizes 

Sample Size Values Lag order P-value Hypothesis 

(Ho) 

Decision Remark 

50 -3.0077 2 0.1885 Unit root Accept Ho Not stationary 

100 -2.2075 3 0.492 Unit root Accept Ho Not stationary 

150 -2.8784 3 0.2197 Unit root Accept Ho Not stationary 

200 -3.715 4 0.02884 Unit root Reject Ho Stationary 

250 -5.2466 4 <0.01 Unit root Reject Ho Stationary 

300 -4.398 4 <0.01 Unit root Reject Ho Stationary 

350 -4.7182 5 <0.01 Unit root Reject Ho Stationary 

400 -4.6407 5 <0.01 Unit root Reject Ho Stationary 

450 -5.8542 5 <0.01 Unit root Reject Ho Stationary 

500 -5.2129, 5 <0.01 Unit root Reject Ho Stationary 

 

Table 1 above shows ADF has the p-values 

which are greater than the critical value of 0.05 

for lower sample sizes and we accept null 

hypothesis of having unit root series for the 

series. However, as sample size increases, the  

 

data series is stationary due to the p-values less 

than 5%. It is clear that the time series plot of 

the poison data series and stationarity tests 

suggest that the data need to be transformed or 

differenced since it is confirmed to have a unit 

root at lower sample sizes. 

Table 2: ADF Test of Differenced Poison Data with λ = 5 at Different Sample Sizes 

Sample Size Values Lag order P-value Hypothesis 

(Ho) 

Decision Remark 

50 -2.8068 2 0.025 Unit root Reject Ho Stationary 

100 -3.0384, 3 0.016 Unit root Reject Ho Stationary 

150 -4.3813 3 <0.01 Unit root Reject Ho Stationary 

200 -3.8288 3 0.023 Unit root Reject Ho Stationary 

250 -4.9996 4 <0.01 Unit root Reject Ho Stationary 

300 -4.5907, 4 <0.01 Unit root Reject Ho Stationary 

350 -3.9346 4 0.014 Unit root Reject Ho Stationary 

400 -4.157 5 <0.01 Unit root Reject Ho Stationary 

450 -3.8714 5 0.0173 Unit root Reject Ho Stationary 

500 -5.565 5 <0.01 Unit root Reject Ho Stationary 

 

Table 2 presents the stationarity tests for the 

differenced poison data with parameter λ=5 

over the period of investigation with a null 

hypothesis of a unit root against alternative 

hypothesis of a level of stationarity. Indeed, the 

data is stationary after the first difference hence 

we can proceed to fitting and forecasting of the 

series. 
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Table 3: AIC and BIC Values of ARIMA (p,1,q) with Parameter (λ = 5) 

 AIC BIC 

Sample 

Sizes 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

50 98.048 99.4584 94.4932 91.259 100.720 103.019 98.0547 95.712 

100 208.108 196.034 190.555 189.614 213.021 202.584 197.106 197.801 

150 311.713 298.668 303.529 283.811 317.894 306.91 311.771 294.114 

200 370.996 366.734 396.660 385.635 378.066 376.161 406.087 397.419 

250 497.755 467.567 446.083 452.469 505.510 477.907 456.422 465.393 

300 599.586 546.161 572.275 571.993 607.898 557.244 583.358 585.846 

350 706.667 714.975 686.157 631.34 715.449 727.225 697.866 645.976 

400 755.901 762.409 779.56 727.905 765.088 774.66 791.811 743.218 

450 892.128 776.746 845.144 800.759 901.673 894.73 857.871 816.668 

500 979.827 863.746 933.499 908.944 989.692 876.899 946.652 925.385 

 
 Figure 2a: AIC values of the Fitted models on Poison Data with Parameter λ = 5 
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Figure 2b: BIC values of the Fitted models on Poison Data with Parameter λ = 5 

 
Table 3 shows the fitted performances of the 

four ARIMA model to data simulated with 

underline poison distribution of parameter with 

the average values of AICs and BICs of each 

model at various sample sizes. The results 

obtained were plotted on the graphs as shown in 

Figure 2a and 2b respectively The best fitted 

model based on AIC and BIC criteria is ARIMA 

(2,1,2) followed by ARIMA (1,1,2), . ARIMA 

(1,1,1) is the weak among fitted models across 

the periods and sample sizes. 

 

 
Figure 3a: Poison Data with λ = 10, and sample size n = 50 
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Figure 3b: Poison Data with λ = 10, and sample size n = 100 

 
Figure 3c: Poison Data with λ = 10, and sample size n = 500 
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Table 4: ADF Test of Poison Data with λ = 10 at Different Sample Sizes 

Sample Size 
Values Lag order P-value Hypothesis 

(Ho) 

Decision Remark 

50 -3.6268 2 0.04208 Unit root Reject Ho Stationary 

100 -4.2136 3 0.01146 Unit root Reject Ho Stationary 

150 -6.1385 3 <0.01 Unit root Reject Ho Stationary 

200 -5.4582 4 <0.01 Unit root Reject Ho Stationary 

250 -3.3743 4 0.006277 Unit root Reject Ho Stationary 

300 -5.1814 4 <0.01 Unit root Reject Ho Stationary 

350 -5.0753 5 <0.01 Unit root Reject Ho Stationary 

400 -4.7945 5 <0.01 Unit root Reject Ho Stationary 

450 -5.593 5 <0.01 Unit root Reject Ho Stationary 

500 -5.7945 5 <0.01 Unit root Reject Ho Stationary 

 Base on the above table, the test is stationary since the p values are less than 0.05  

Table 5: AIC and BIC Values of ARIMA (p,1,q) with Parameter (λ = 10) 

Sample 

Sizes 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

50 109.565 104.758 112.444 101.450 112.398 108.535 116.222 106.172 

100 208.222 212.151 216.951 207.460 213.212 218.806 223.606 215.778 

150 314.531 312.488 308.334 330.441 320.763 320.798 316.644 340.828 

200 408.571 413.369 413.822 411.615 415.679 422.847 423.300 423.463 

250 507.671 524.302 515.869 543.901 515.456 534.682 526.249 556.876 

300 597.063 596.940 607.364 630.043 605.400 608.057 618.480 643.939 

350 704.063 707.108 733.050 701.437 712.866 718.846 744.788 716.109 

400 807.426 816.501 853.909 834.713 816.633 828.776 866.185 850.057 

450 927.558 921.701 897.163 927.493 937.121 934.451 909.912 943.430 

500 1034.70 1071.11 1052.56 1049.32 1044.58 1084.28 1065.73 1065.79 

 
Figure 4a: AIC values of the Fitted models on Poison Data with Parameter λ = 10 
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Figure 4b: BIC values of the Fitted models on Poison Data with Parameter λ = 10 

Table 5 shows relative performance of the four 

fitted ARIMA models with the average values 

of AIC and BIC of each model at various 

sample sizes. The results obtained were plotted 

on the graphs as shown in Figure 4a and 4b 

respectively. The best fitted model on poison 

data with parameter λ = 10 is ARIMA (111), at 

various sample sizes followed by ARIMA 

(2,1,2). ARIMA (1,1,2) is the weak performing 

Model. 

 

 
Figure 5a: Poison Data with λ = 20, and sample size n = 50 
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Figure 5b: Poison Data with λ = 20, and sample size n = 100 

 
Figure 5c: Poison Data with λ = 20, and sample size n = 500 
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Table 6: ADF Test of Poison Data with λ = 20 at Different Sample Sizes 

Sample Size Values Lag order P-value Hypothesis 

(Ho) 

Decision Remark 

50 -2.8515 2 0.0248 Unit root Reject Ho Stationary 

100 -3.946 3 0.02188 Unit root Reject Ho Stationary 

150 -3.0749 3 0.01403 Unit root Reject Ho Stationary 

200 -3.8491 4 0.02088 Unit root Reject Ho Stationary 

250 -4.333 4 <0.01 Unit root Reject Ho Stationary 

300 -4.4322 4 <0.01 Unit root Reject Ho Stationary 

350 -4.9275 5 <0.01 Unit root Reject Ho Stationary 

400 -5.6941 5 <0.01 Unit root Reject Ho Stationary 

450 -5.8183 5 <0.01 Unit root Reject Ho Stationary 

500 -5.8718 5 <0.01 Unit root Reject Ho Stationary 

Base on the above table, the test is stationary since the p values are less than 0.05  

Table 7: AIC and BIC Values of ARIMA (p,1,q) with Parameter (λ = 20) 

 AIC BIC 

Sample 

Sizes 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,1) 

ARIMA 

(2,1,2) 

50 121.293 131.669 120.510 120.556 124.127 135.447 124.288 126.278 

100 248.819 239.329 244.383 235.889 253.809 245.983 251.037 254.207 

150 341.452 345.023 342.613 339.917 347.684 353.333 350.924 350.305 

200 495.409 491.951 483.401 443.677 502.517 501.429 492.878 455.524 

250 572.069 599.048 591.894 576.839 579.854 609.428 602.275 589.814 

300 687.362 695.285 692.641 698.687 695.699 706.401 703.758 712.582 

350 797.261 828.101 835.319 806.991 806.065 839.838 847.057 821.663 

400 945.708 933.620 912.399 953.358 954.915 945.896 924.675 968.702 

450 1059.77 1050.19 1078.32 1091.31 1069.34 1062.94 1091.07 1107.25 

500 1159.28 1142.56 1194.43 1188.49 1169.16 1155.74 1207.60 1204.96 

 

Figure 6a: AIC values of the Fitted models on Poison Data with Parameter λ = 20 
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Figure 6b: BIC values of the Fitted models on Poison Data with Parameter λ = 20 

Table 7 shows the fitted performances of the 

four ARIMA models to data simulated under 

poison data with λ = 20.The average values of 

AIC and BIC of each model at various sample 

sizes were recorded. The results obtained were 

plotted on the graphs as shown in Figure 6a and 

6b respectively. From Figure 6a and 6b; the four 

models have close performances on the basis of 

AIC and BIC.  However, it can be seen that 

ARIMA(1,1,1) Performs better than the other 

Models while ARIMA(1,1,2) has weak 

performance. 

Table 8: Forecast Performance of the Models using Theil U Statistic 

Steps 

Ahead 

ARIMA 

(1,1,1) 

ARIMA 

(1,1,2) 

ARIMA (2,1,1) ARIMA (2,1,2) 

5 1.33013 2.84114 2.57219 3.1075 

10 1.30324 2.81424 2.54529 3.09641 

15 0.27634 2.78735 2.5184 3.0435 

20 0.24944 2.76045 1.4915 3.0286 

25 0.22255 2.73356 1.46461 3.0026 

30 0.19565 2.70666 1.43771 2.9785 

35 0.16876 2.67977 1.41082 2.94872 

40 0.14186 2.65287 1.38392 2.92182 

45 0.11497 2.62598 1.35703 2.89493 

50 0.08807 2.59908 1.33013 2.86803 

100 200 300 400 500

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

1
2

0
0

Sample Size

B
IC

ARIMA(111)

ARIMA(112)

ARIMA(211)

ARIMA(212)



Bashir Alhaji Mustapha, Harun R. Bakari and Yusuf A. Mohammed                              ISSN: 2811-2881 

 

29 

 

 

Figure 7: Forecast Performance in Table 8 

 

Based on the Theils Analysis in table 8 above, 

the ARIMA (2,1,2) has the highest forecasting 

power due to their values greater than 1 and also 

greater than other values of the models across 

the steps ahead; this is followed by ARIMA 

(1,1,2) and ARIMA (2,1,1). However, the Theil 

values of ARIMA (1,1,1), at higher steps ahead 

are close to zero, hence it is not as good as other 

models in forecasting. Indeed, the forecasting 

ability of all the models decreases as steps 

ahead increase. 

Analysis of COVID-19 data 

This section consists of detail description of the 

analysis of Covid-19 data using ARIMA 

modeling method for forecasting and 

estimation. Most of the computational works for 

ARIMA models are carried out by using R 

software. The data obtained on daily confirmed 

cases of COVID-19 were analysed to check if 

the data is stationary or has a unit root using 

Augmented Dickey Fuller (ADF). The 

autocorrelation and partial autocorrelation 

(PACF) of data were also plotted to confirm the 

statuary of its stationarity.  The ARIMA models 

of different orders were used to model the 

COVID-19 with aim of selecting the best model 

for forecasting. For the purposes of the flow of 

the analysis, the time series data on daily cases 

of COVID-19 for the period of 36 months in 

Nigeria were used. However, the time series 

plots which display observations on the y-axis 

against equally spaced time intervals on the x-

axis used to evaluate patterns and behaviour in 

data over time is displayed in the Figure 8 

below: 
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Figure 8: Plot of Confirmed Cases of Daily COVID-1

The Figure 8 above indicates clearly that the 

confirm cases of COVID-19 in Nigeria was not 

constant but rather varied from one year to the 

other as well as from one month to the other  

with no systematically visible pattern, structural 

breaks, outliers, and no identifiable trend 

components in the time series data or no 

consistently increasing. It is therefore not 

stationary.

Table 9: Test of Stationarity using Augmented Dickey-Fuller (ADF) Test 

Cases of 

CONVID-19 

ADF 

Value 

P-Value Lag 

Order 

H0 Decision Remark 

Total Confirmed -3.8283 0.01758 10 No Stationarity Reject H0 Stationary 

 

 

Table 9 above presents ADF analyses of  

confirmed cases of COVID-19 with values -

3.8283, with a p-value of 0.01758, which is less 

than the critical value of ( ) 0.05, we  reject the 

null hypothesis of having a unit root series and 

therefore conclude that the data series is 

stationary and no need for differenced.  
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Table 10: Model Identification process  

 

Model 

Parameter  

AIC 

 

BIC 

 

MSE AR(1) AR(2) MA(1) MA(2) 

ARIMA(1,0,1) 0.9821  

(      ) 

- -0.6401 

(      ) 

- 14230.9 14250.9 3.1776 

ARIMA(1,0,2) 0.9848 

 (        
- -0.5510 

(      ) 

0.1182 

(      ) 

14214.9 14239.9 3.1249 

ARIMA(2,0,1) 0.8341  

(0.0421) 

-0.1677  

(      ) 

-0.7262 

(0.0270) 

- 14216.1 14241.1 3.1284 

ARIMA(2,0,2) 

 

0.7341 

 (0.1548) 

-0.0188  

(0.1522) 

-0.5696 

(0.1522) 

-0.1063  

(0.0994) 

14216.9 14246.8 3.1259 

Based on the parameters as reported in Table 10 

above, The estimated coefficient values of all 

ARIMA (p,d,q) strictly conforms to the bounds 

of parameter, between -1 and 1. This has made 

the models to be stationary. Additionally, 

comparing the ARIMA models above interms of  

the AIC, BIC and MSE, ARIMA(1,0,2) clearly 

slightly prefer to other models since their 

estimated AIC,  BIC  and MSE are smaller as 

compared to other models. Indeed, based on the 

parameter estimates and the criteria, ARIMA (1, 

0, 2) is chosen as the best model to fit daily 

COVID-19 data. 

Model Adequacy (Diagnostic) Checking of Estimated Models  

Table 11: Ljung-Box Test for ARIMA (1,0,2) Model 

Test Type Chi-square Value P-value Decision 

Ljung-Box 105.853 0.4371 Do not reject null hypothesis 

The hypothesis that the Ljung-Box test is:  

Null hypothesis (Ho): The residuals are uncorrelated  

Alternative hypothesis (H1): The residuals are correlated  

 

The test is significant and its corresponding null 

hypothesis is rejected, if the p-value is less that 

chosen critical value of 0.05. From Table 11, 

the Ljung-Box test for the COVID-19 data, the 

chi-square statistic of 105.853 gives a 

corresponding p- value of 0.4371. Because the 

p-value is quite large (greater than the usually 

chosen a-level of 0.05), the test is not significant 

and therefore we do not reject the null 

hypothesis, thus the residuals appear to be 

uncorrelated. This indicates that the residuals of 

the fitted ARIMA(1,0,2) model are white noise, 

and for that matter the model fits the series quite 

well (the parameters of the model are 

significantly not  different from zero and the 

residuals are uncorrelated), so we can use this 

model to make forecasts. 

Table 12: Shapiro-Wilk Normality Test for ARIMA (1,0, 2) Model 

Test Type W P-value Decision 

Shapiro-Wilk Normality 0.9579, 0.4128 accept Null hypothesis 
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From the table 12, p-value of 0.4128 is quite 

large relatively to chosen a-level of 0.05, the 

test is not significant and therefore we do not 

reject the null hypothesis that the residual is 

normal. Thus, the Shapiro-Wilk test suggests 

that the standardized residuals are normal. This 

also supports the fact that the residuals of the 

fitted ARIMA (1,0,2) model are white noise, 

and for that matter the model fits the series quite 

well (since one of the assumptions of the 

residual being white noise is normality). Hence 

the model is stationary due to the presence of 

white noise. 

 

 

 

Forecasting for Future COVID-19 Using the 

Best Fitted Model [ARIMA(1,0,2)]  

A 12-step ahead out-of-sample forecast was 

conducted based on the data of the internal 

COVID-19 collection from the inception to 

February (2023) . The forecast is visually 

displayed in Figure 9. The 12 days of 2020-

2023 were then forecasted based on data from 

the preceding time intervals. The forecast was 

obtained by using data from the previous 

periods to estimate COVID-19 changes for the 

actual period by applying the ARIMA (1,0,2) 

models. It can be seen in Figure 9 that the 

forecast is quite accurate, and hereby confirms 

what was expected. It seems that ARIMA 

(1,0,2) does a very good job in capturing the 

dynamic nature of  the data and forecasting. 

 

 
Figure 9: Forecasts from an ARIMA (1, 0, 2) Model for COVID-19 Confirmed Cases  

 

CONCLUSION  

In this study, Comparative performance of the 

ARIMA models of different orders was carried 

out on Poison data. It can be seen that, in the 

comparative performances of the models 

ARIMA (2,1,2) models are obviously preferred 

to be the best model that captured the Poison 

data when λ =5  using the selected criteria while 

ARIMA (1,1,1) is chosen as the best for the data 

when λ =10, 20. Based on the forecasting ability 

of the models, the ARIMA (2,1,2) has the 

highest forecasting power due to their values 

greater than 1 and also greater than other values 

of the models across the steps ahead; this is 

followed by ARIMA (1,1,2) and ARIMA 
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(2,1,1). However, the Theil values of ARIMA 

(1,1,1), at higher steps ahead are close to zero, 

hence it is not as good as other models in 

forecasting. Indeed, the forecasting ability of all 

the models decrease as steps ahead increase. 

Lastly, a class of ARIMA models that can 

appropriately describe the daily level of 

COVID-19 cases in Nigeria from the period of 

Inception to February(2023) are identified. The 

model fit to the data as defined by errors in the 

forecast both on aggregate and selective terms 

are adequate. Also the best model has an 

enhanced COVID-19 forecast. Therefore ,based 

on the parameter reported in table 10, the 

estimated coefficient values of all ARIMA 

(p,d,q) strictly conforms to the bounds of the 

parameter between -1 and 1 and this has made 

the model to be stationary comparing the 

ARIMA models in terms of the AIC, BIC and 

MSE. It is clearly preferred ARIMA (1,0,2) to 

other models since their estimated AIC, BIC 

and MSE are smaller as compared to other 

models. The forecast is quite accurate, and 

hereby confirms what was expected. It seems 

that ARIMA (1,0,2) does a very good job in 

capturing the dynamic nature of  the data and 

forecasting. It was observed that the confirmed 

cases increase, and then keep stationary 

throughout the future times. The ARIMA 

(2,1,2) and ARIMA (1,1,1) models are 

recommended in capturing poison data with 

parameter λ =5, λ =10 and λ =20. 
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