
AJBAR Vol. 3(1), February 2024: 26-41, ISSN: 2811-2881

26

 Arid Zone Journal of Basic and Applied Research

Faculty of Science, Borno State University

Maiduguri, Nigeria

Journal homepage: https://www.azjournalbar.com

Research Article

Integration of Modified Classical Conjugate Gradient

Methods for Unconstrained Optimization
1
Oluwaseun B. Onuoha,

1
Yoyinade J. Aborisade,

2
Grace Egenti and

3
Rasheed O. Ayinla

1
Department of Mathematical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria

2
ACETEL, National Open University of Nigeria

3
Department of Mathematics and Statistics, Kwara State University, Malete, Nigeria

*Corresponding author’s Email: oluwaseun.akinduko@aaua.edu.ng, doi.org/10.55639/607.474645

ARTICLE INFO:

Keywords:
Optimization problems,

Performance tests,

Convergence rates,

Computational

efficiency

ABSTRACT

The integration of modified classical conjugate gradient methods (CGMs) for

unconstrained optimization represents a crucial and evolving area of research

within the field of optimization algorithms. Over time, numerous studies have put

forth diverse modifications and novel approaches to enhance the effectiveness of

classical CGMs. These modifications aim to address specific challenges and

improve the overall performance of optimization algorithms in unconstrained

scenarios. In order to tackle unconstrained optimization challenges and improve

our understanding of their synergies, this ongoing study aims to unify different

modified classical CGMs. Conventional CGMs have proven effective for

optimization tasks, and a range of different approaches have been produced by

carefully modifying these techniques. The main goal of this paper is to combine

these modified versions, with particular attention to those that have similar

numerators. The integration process involves systematically merging the

advantageous aspects of these modified methods to develop not only innovative but

also more resilient approaches to unconstrained optimization problems. The

ultimate goal of this unification effort is to capitalize on the strengths inherent in

different approaches to create a cohesive framework that significantly improves

overall optimization performance. To thoroughly assess the efficacy of the

integrated methods, a series of comprehensive performance tests are conducted.

These tests include a meticulous comparison of outcomes with those of classical

CGMs, providing valuable insights into the relative strengths and weaknesses of

the modified approaches across diverse optimization scenarios. The evaluation

criteria encompass convergence rates, solution accuracy, and computational

efficiency. The conclusive outcome demonstrates that the unified approaches

consistently outperform individual methods across all three crucial evaluation

criteria.

Corresponding author: Oluwaseun B. Onuoha, Email: oluwaseun.akinduko@aaua.edu.ng

Department of Mathematical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

27

INTRODUCTION

The significance of unconstrained optimization

problems lies in their applicability to a wide

range of real-world situations. By allowing

flexibility in variable values, these problems

provide a natural representation for many

optimization challenges. The role of CGMs in

solving unconstrained problems is pivotal, as

these methods offer efficient and robust

approaches to iteratively approaching the optimal

solution. Unconstrained optimization problems

can arise directly in certain circumstances, but

they can also arise indirectly by reformulating

constrained optimization problems. By

substituting the constraint with penalized terms in

the objective function, it is generally possible to

tackle an optimization problem as an

unconstrained problem.

Consider the function minimizing an objective

function that depends on real variables with no

restrictions on their values. Let x be a real

vector with n components, and let :

be a smooth function. The unconstrained problem

is, then:

 min f (x), x (1.0)

whose gradient is denoted by g(x). The iterative formula of the CGM is given by:

 (1.1)

where is the search direction and is the

step-length. For nonlinear CGMs, the current

direction, is a linear combination of the

steepest descent direction and the previous

direction , i.e.,

 (1.2)

where is a scalar and () denotes the

gradient. Several well-known classical CGMs,

proposed by pioneers such as Hestenes and

Stiefel (1952), Fletcher and Reeves (1964), Polak

and Ribiere (1969), and Polyak (1969), Dai and

Yuan (1999), Fletcher (1987), and Liu and Storey

(1991), offer distinct ways to compute . Their

 formulae are given by:

 (1.3)

‖ ‖

‖ ‖
 (1.4)

‖ ‖
 (1.5)

‖ ‖

 (1.6)

‖ ‖

 (1.7)

 (1.8)

where represents difference in gradients given

by , ‖ ‖

 ‖ ‖

denotes the Euclidean norm and denotes

transpose.

A line search method, which may be exact or

inexact, is required to calculate the CGM's step

length. The precise value of is computed

using an exact line search. This is typically

tedious and susceptible to errors. Researchers

therefore opted to use the inexact line search,

which computes the value of numerically, to

navigate around this restriction. The strong Wolfe

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

28

(SW) line search, which is outlined below, is

among the most widely used inexact line

searches.

 {
 () ()

| ()
 | |

 |
 (1.9)

where .

REVIEW OF RELATED LITERATURES

The CGM was invented by Hestenes and Stiefel

(1952) in their seminal publication, which

provided an algorithm for solving symmetric,

positive-definite linear algebraic equations. Reid's

1970 article introduced the conjugate gradient

(CG) method as a primary area of active research

in unconstrained optimization, following a brief

period of stagnation. Fletcher and Reeves (1964)

developed the FR method, which is widely

regarded as the first nonlinear CG algorithm.

Since then, several other CG algorithm versions

have been proposed. These versions have made

significant contributions to the field of

unconstrained optimization.

Based on similarities in their numerators and

denominators, Hager and Zhang (2006) revealed

different possibilities for the early CGMs.

They are methods with numerators of the form

‖ ‖
 or

 and denominators of the form

‖ ‖
 ,

 or
 . They demonstrated that

while methods with ‖ ‖
 in their numerators

have a strong convergent property, they are prone

to jamming. In contrast, methods with a common

numerator of
 have a built-in restart

feature that solves the jamming issue, but they

might not be generally convergent. To enhance

the functionality of these traditional CGMs,

researchers have thus made a variety of

modifications utilizing various inexact line

searches. Andrei (2008a), for example, developed

new accelerated CG algorithms that are

essentially modifications of the CG algorithm of

Dai and Yuan. The accelerated technique

proposed in the study was able to increase the

algorithms' efficiency. In 2001, Dai and Liao

introduced a novel conjugacy condition that gives

the old conjugacy condition when the line search

is exact but takes into account an inexact scheme.

Two novel CGMs were proposed based on the

new conjugacy requirement, one of which was

found to be particularly efficient. A modified

PRP CG approach was introduced by Mohammed

et al. (2015) to solve large-scale unconstrained

optimization problems where the parameter

is restricted and the sufficient descent property is

satisfied under the strong Wolfe-Powell line

search.

Zhang (2009) introduced two new variants of

Hestenes-Stiefel nonlinear CGM, based on the

secant condition commonly met by quasi-Newton

methods, which are descent methods even with

inexact line searches. A modified hybrid CGM

was introduced by Fang et al. (2021) and has

proven effective in handling large-scale,

unconstrained optimization problems. Regardless

of the line search, this approach consistently

produces accurate directions at each iteration,

demonstrating its effectiveness under the Wolfe

line search. Based on a modified secant equation,

Nezhadhosein (2020) suggested a modified

descent-spectral CG approach. This method

combines a suitable descent requirement with

higher-order precision in estimating second-order

curvature information.

Dai and Wen (2012) presented two modified PRP

and HS methods, with the following formulae:

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

29

‖ ‖

‖ ‖

‖ ‖
|
 |

‖ ‖
 |

 |
 (2.1)

and

‖ ‖

‖ ‖

‖ ‖
|
 |

 |

 |
 (2.2)

Again, Du et al. (2016) suggested two modified PRP and HS methods, where the resulting CG coefficients

are defined as follows:

 (

|
 |

‖ ‖
)

‖ ‖
 (2.3)

and

 (

|
 |

‖ ‖
)

. (2.4)

Recently, Mehamdia et al. (2023) proposed two modified CG methods in the form:

‖ ‖
 |

 |

 |

 |
, (2.5)

where
|
 |

‖ ‖‖ ‖‖ ‖
 [] .

and

‖ ‖
 |

 |

‖ ‖
 |

 |
, (2.6)

where [] .

All the aforementioned authors have contributed

in one way or another to the field of

unconstrained optimization by improving the

traditional CG methods, though there were no

special focus on specific sets of the traditional

methods. To bridge this gap, this work is

therefore motivated to give further improvements

on the traditional methods by focusing

specifically on those ones with similar

numerators. By the unification of the two sets of

methods with similar numerators, this study aims

to address the jamming and convergence

problems of these classical methods.

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

30

UNIFICATION OF THE CLASSICAL

GRADIENT METHODS

To generate new methods that could be applied to

the solution of nonlinear, unconstrained

optimization problems, we combine the classical

gradient methods listed in Section 1 that have

similar numerators. The following Lemmas are

applied in the derivation of the classical CGMs.

LEMMA 1

 The search direction, are conjugate i.e.,

 (3.1)

LEMMA 2

In a conjugate direction algorithm,

 (3.2)

LEMMA 3

The gradient and the search direction are conjugate i.e.,

 (3.3)

CLASSCAL CGMs WITH SAME

NUMERATORS

From the conventional CGMs given by (1.3) -

(1.8), there are two sets of CGMs with similar

numerators. The first set has the same numerator

‖ ‖
 , while the second set has a similar

numerator
 . In this subsection, we show

derivation of two unified CGMs, based on

Lemmas 1, 2 and 3.

Unified CGM with Numerator ‖ ‖

The conventional CGMs with same numerator

‖ ‖
 are

 and

 . Let

represents a unified CGM that combines these

three classical CGMs. Then:

‖ ‖

‖ ‖

‖ ‖

‖ ‖

‖ ‖

‖ ‖

‖ ‖

‖ ‖

 ‖ ‖
 (

‖ ‖

)

 ‖ ‖
 (

 ‖ ‖

‖ ‖

)

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

31

By further simplification of the numerator, we have:

 ‖ ‖

 ()
 () ‖ ‖

 ‖ ‖

By using (1.2) together with Lemmas 2 and 3, the above becomes:

 ‖ ‖

 ‖ ‖

 = ()
 ‖ ‖

 ,

 ‖ ‖

 ‖ ‖
 ‖ ‖

 ‖ ‖

Therefore.

 ‖ ‖
 ‖ ‖

‖ ‖

. (3.4)

Unified CGM with Numerator

As listed in Section 1, the CGMs
 ,

 , and

 have a common numerator

 . By

denoting a CGM combining these three classical

CGMs by
 , we have:

‖ ‖

‖ ‖

,

 (

‖ ‖

‖ ‖

)

Factorizing the numerator where , we have:

 ()

 () ‖ ‖

 ‖ ‖

 ‖ ‖
 (By Lemmas 2 and 3).

By using (1.2) the above yields:

 ()
 ‖ ‖

 ‖ ‖

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

32

 ‖ ‖

 =‖ ‖
 ‖ ‖

 (By Lemma 3)

 ‖ ‖

Therefore,

 (
 ‖ ‖

‖ ‖

)

 ‖ ‖

‖ ‖

 ‖ ‖

The unified classical conjugate gradient method with similar numerator
 is thus given by:

 ‖ ‖

. (3.5)

Thus, Equations (3.4) and (3.5) depict unified

versions of the classical CGMs, which we obtain

by applying Lemmas 1, 2, and 3 to the

simplification procedures of the traditional

methods with the same numerators ‖ ‖
 and

 . The UN1 and UN2 approaches' enhanced

performance is made possible by the term

"‖ ‖
 " being included in the numerators. A

numerical experiment is carried out to

demonstrate the effectiveness of the new

approaches in contrast to the conventional

methods; the specifics are provided in the next

section. The following algorithm is suggested in

order to implement the two new techniques:

Unified CGMs Algorithm

 Step 1 Select the initial starting point and compute: () and (). Set

 and

Step 2 If ‖ ‖
 then stop; otherwise continue with step 3.

Step 3 Determine the step length by (1.9).

Step 4 Update the variables as: Compute and

Step 5 Determine
 and

 by (3.4) and (3.5).

Step 6 Compute the search direction by (1.2).

Step 7 Set and return to Step 2.

RESULTS AND DISCUSSION

In comparison to conventional methods, the

numerical performance of the two proposed

unified approaches is presented in this section. A

numerical experiment refers to a simulation or

computation conducted on a computer to analyze

and understand a phenomenon, system, or

process. Instead of physical experimentation,

numerical experiments use mathematical models

and algorithms to explore and study various

scenarios, helping researchers gain insights and

make predictions. Thus, in this study, twenty (20)

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

33

large-scale, unconstrained minimization

problems, each of dimension 5000, were

subjected to a numerical experiment in order to

test the efficacy of the two new methods in

comparison to the conventional methods. To

compute the step length, the SW line search is

used for efficiency and cost-effectiveness. Andrei

(2008) compiled the test problems, which were

taken from the CUTE library. In an effort to

provide an environment for testing both

constrained and unconstrained nonlinear

optimization methods, Bongartz et al. (1995)

developed the CUTE package. The test problems'

names, dimensions, initial points, and sources are

listed in Table 1, while Tables 2 and 3 include the

numerical results for the number of iterations and

CPU time.

The computational algorithm was implemented

using MATLAB R2007b (7.5.0.342). The

numerical codes were run on a Dell PC with the

specifications ``Intel (R) CoreTM i3, 2.20GHz

processor, 4GB RAM, and windows 10 pro–

operating system of 64-bit". The iterations were

terminated when ‖ ‖
 , and a failure

declared if this condition was not satisfied after

2000 iterations. ITR indicates the number of

iterations, while CPU indicates the processing

time (in seconds), according to Tables 2 and 3.

Dolan and More (2002) presented their proposed

graphical tool for benchmarking algorithms as

“Performance profiles", which they described as

the cumulative function for a performance metric,

which could be the ratio of the computing time of

the solver against the best time of all the solvers

or the ratio of the number of iterations of the

solver to the best minimum number of all the

solvers. To compare the performance of the two

novel methods to the existing methods, the

performance profiles of Dolan and Morè were

used. Figures 1 through 4 show the comparison

based on CPU time and number of iterations.

The data displayed in Tables 2 and 3 were used in

statistical analysis to more precisely quantify the

variations in the performances of the new

methods UN1 and UN2. Specifically, we

performed an analysis of variance (ANOVA) test

with a level of significance of . The

statistical results for the UN1 technique in regard

to the FR, CD, and DY techniques are displayed

in Tables 2A, 2B, 2C, and 2D, while the

statistical results for the UN2 method in relation

to the HS, LS, and PRP methods are displayed in

Tables 3A, 3B, 3C, and 3D. The results of the

statistical analysis indicate that the UN1 and UN2

approaches are better than the ones that are

already in use because of their much shorter

average computational times and iteration counts.

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

34

Table 1: Details of the Test Problems (Dimension 5000)

TEST PROBLEMS INITIAL POINTS SOURCES

Extended Block Diagonal [0.1, 0.1…, 0.1] Bongartz et al. (1995)

Power function [1, 1, …, 1] Andrei (2008)

Arwhead Function [1, 1, …, 1] Andrei (2008)

Diagonal 5 Function [1.1, 1.1, …, 1.1] Andrei (2008)

Qf1 Function [1, 1, …, 1] Bongartz et al. (1995)

Qf2 Function [0.5, 0.5, …, 0.5] Bongartz et al. (1995)

Chebyquad Function [1, 1, …, 1] Bongartz et al. (1995)

Diagonal 4 function [1, 1, …, 1] Andrei (2008)

Arglinc Function [1, 1, …, 1] Andrei (2008)

Brownbs Function [1, 1, …, 1] Bongartz et al. (1995)

Bdexp Function [1, 1, …, 1] Bongartz et al. (1995)

Bdqrtic Function [1, 1, …, 1] Andrei (2008)

Staircase 1 Function [1, 1, …, 1] Andrei (2008)

Staircase 2 Function [0, 0, …, 0] Andrei (2008)

Liarwhd Function [4, 4, …, 4] Andrei (2008)

Extended Beale Function [1,0.8, …, 1, 0.8] Andrei (2008)

Extended Wood Function [-3,-1,-3,-1,…, -3,-1,-3,-1] Andrei (2008)

Extended Tridigonal-1 Function [2, 2, …, 2] Andrei (2008)

Hager Function [1, 1, …, 1] Andrei (2008)

Generalised Rosenbrock [-1.2,1, …, -1.2,1] Andrei (2008)

 Table 2: Test results of the UN1, FR, CD, and DY methods

TEST PROBLEMS UN1 FR CD DY

 ITR/CPU ITR/CPU ITR/CPU ITR/CPU

Extended Block Diagonal 2/0.044 492/18.517 22/0.481 116/2.484

power function 1/0.036 1/0.037 1/0.047 1/0.041

Arwhead Function 6/0.554 103/2.627 2000/52.491 109/2.693

Diagonal 5 Function 5/0.091 13/0.227 7/0.217 23/0.404

Qf1 Function 4/0.211 2000/83.544 2000/50.072 233/6.334

Qf2 Function 10/0.205 10/0.196 39/0.755 2/0.048

Chebyquad Function 5/0.161 471/6.417 3/0.074 2/0.048

Diagonal 4 function 3/0.142 17/0.423 17/0.339 15/0.034

Arglinc Function 1/0.052 1/0.052 1/0.052 1/0.0313

Brownbs Function 8/1.657 6/0.49 22/1.034 9/0.052

Bdexp Function 3/0.119 3/0.078 2/0.05 3/0.443

Bdqrtic Function 4/1.494 2000/241.031 2000/193.278 2000/0.084

Staircase 1 Function 1/0.018 1/0.02 1/0.019 1/217.868

Staircase 2 Function 3/0.096 16/0.294 92/1.706 2/0.019

Liarwhd Function 8/1.065 2000/129.882 2000/58.106 2000/0.043

Extended Beale Function 4/2.162 2000/266.686 2000/145.709 2000/83.873

Extended Wood Function 8/2.507 1680/192.577 2000/110.738 121/317.994

Extended Tridigonal Function 4/0.495 2000/155.925 2000/56.291 2000/14.857

Hager Function 7/1.938 17/0.816 11/0.683 8/0.429

Generalised Rosenbrock

Function 3/0.157 2000/207.261 134/3.86 2000/209.261

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

35

Figure 1: Performance Profile on the Number of Iterations (UN1 versus FR, CD, and DY)

Table 2A: Statistical Comparison of UN1 Method with FR, CD and DY Methods in Terms of Number of Iterations

Groups Count Sum Average Variance

UN1 20 90 4.5 6.789474

FR 20 14831 741.55 857901.9

CD 20 14352 717.6 933178.4

DY 20 10646 532.3 759385.5

Table 2A presents a comparative analysis of the

efficiency of UN1, FR, CD, and DY methods

based on the number of iterations across 20 test

problems. The UN1 approach demonstrated the

lowest average number of iterations (4.5),

suggesting that it is an efficient way of reaching

convergence. On the other hand, the DY

technique showed a noticeably greater average

number of iterations (532.3), with the greatest

average (741.55) being achieved by the FR

approach, followed by the CD method (717.6).

Variance values shed light on how many

iterations are distributed among the methods in

each group. These results indicate that, in terms

of iteration count efficiency, the UN1 approach

performs better than the DY, CD, and FR

methods on average, making it the better option

for reaching convergence in iterative processes.

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

36

Table 2B: ANOVA ()

Source of Variation SS df MS F P-value F crit

Between Groups 7045112 3 2348371 3.683036 0.015577 2.724944

Within Groups 48458979 76 637618.1

 Total 55504091 79

Table 2B reveals that there is a significant difference in the average number of iterations recorded for each

approach, as indicated by the P value (0.015577), which is less than 0.05.

Figure 2: Performance Profile with respect to CPU time (UN1 versus FR, CD, and DY)

Table 2C: Statistical Results Comparing UN1 Method with FR, CD and DY Methods with Respect to CPU Time

Groups Count Sum Average Variance

UN1 20 13.204 0.6602 0.676679

FR 20 1307.1 65.355 9073.086

CD 20 676.002 33.8001 3148.91

DY 20 857.0403 42.85202 8576.865

The average computation times for the UN1, FR,

CD, and DY approaches over 20 test problems

are summarized in the above table. The UN1

approach showed the least time required for

computation on average (0.6602s), highlighting

its effectiveness. Following closely is the CD

method with an average time of 33.8001s, while

the DY method recorded an average time of

42.85202s. At 65.355s, the FR technique yielded

a comparatively greater average time. The range

of computation times for each method within its

group is shown by the variance values. As a

result, the UN1 approach is a better option for

computational tasks because it is the fastest of the

CD, DY, and FR approaches.

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

37

 Table 2D: ANOVA ()

Source of

Variation SS Df MS F P-value F crit

Between Groups 43239.26 3 14413.09 2.771809 0.047218 2.724944

Within Groups 395191.2 76 5199.884

 Total 438430.5 79

The P value (0.047218) is less than 0.05. This is

an indication that there is a significant difference

in the average computational time for UN1, FR,

CD and DY methods, as demonstrated in Table

2C.

From Figures 1 and 2, it is obvious that amongst

the four methods being compared, the UN1

method performs better than the DY and CD

methods while the FR method has the least

performance.

Table 3: Test results of the UN2, HS, LS, and PRP methods

PROBLEMS UN2 HS LS PRP

 ITR/CPU ITR/CPU ITR/CPU ITR/CPU

Extended Block Diagonal 2/0.044 882/20.586 102/3.841 107/4.066

power function 1/0.0372 1/0.037 1/0.043 1/0.037

Arwhead Function 2/0.444 30/0.727 94/2.61 216/5.891

Diagonal 5 Function 2/1.159 3/0.055 25/0.439 9/0.205

Qf1 Function 2/0.182 167/2.561 2000/63.103 492/13.803

Qf2 Function 2/0.244 3/0.053 19/0.473 19/0.437

Chebyquad Function 2/0.078 3/0.049 2000/27.755 2000/27.768

Diagonal 4 function 2/0.142 4/0.123 60/2.048 37/1.234

Arglinc Function 2/0.052 1/0.052 1/0.052 1/0.052

Brownbs Function 2/1.167 3/0.138 11/0.73 11/0.739

Bdexp Function 2/0.119 3/0.08 3/0.079 3/0.078

Bdqrtic Function 2/1.801 2000/152.458 2000/245.83 2000/213.384

Staircase 1 Function 2/0.018 1/0.019 1/0.019 1/0.028

Staircase 2 Function 2/0.101 7/0.154 45/1.076 45/1.043

Liarwhd Function 2/0.998 6/0.261 2000/89.95 45/17.907

Extended Beale Function 2/1.741 30/2.688 2000/216.515 446/100.48

Extended Wood Function 2/0.948 14/1.054 643/69.907 167/21.634

Extended Tridigonal Fu1nction 2/0.723 795/25.661 2000/118.307 2000/122.625

Hager Function 2/0.311 13/0.551 132/4.029 37/1.118

Generalised Rosenbrock

Function 2/0.162 2000/209.374 2000/211.83 2000/204.364

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

38

Figure 3: Performance Profile on the Number of Iterations (UN2 versus HS, LS, and PRP)

Table 3A: Statistical Results for UN2 VS HS, LS and PRP Based on Number of Iterations

Groups Count Sum Average Variance

UN2 20 39 1.95 0.05

HS 20 5966 298.3 403183.9

LS 20 15137 756.85 894758.9

PRP 20 9637 481.85 625828.9

The above table provides statistical results

comparing the efficiency of the UN2, HS, LS,

and PRP methods based on the number of

iterations across 20 test problems. On average,

the UN2 method demonstrated the lowest number

of iterations (1.95), indicating its efficiency in

converging to solutions. In contrast, the HS

method exhibited a significantly higher average

number of iterations (298.3), followed by the

PRP method (481.85), and the LS method with

the highest average (756.85). Variance values

reveal the dispersion of iteration counts within

each method's group. These results suggest that,

on average, the UN2 method is more efficient in

terms of the number of iterations compared to

HS, PRP, and LS methods.

 Table 3B: ANOVA ()

Source of Variation SS df MS F P-value F crit

Between Groups 6037925 3 2012642 4.184783 0.008508 2.724944

Within Groups 36551662 76 480942.9

 Total 42589587 79

The P value (0.008508) is less than 0.05, showing a significant difference in the average number of

iterations needed by UN2, HS, LS, and PRP methods to achieve convergence.

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

39

Figure 4: Performance Profile with respect to CPU time (UN2 versus HS, LS, and PRP)

Table 3C: Statistical Analysis of UN2 Method versus HS, LS and PRP Based on Computational Time

Groups Count Sum Average Variance

UN2 20 10.4712 0.52356 0.336037

HS 20 416.681 20.83405 3131.469

LS 20 1058.636 52.9318 6732.555

PRP 20 736.893 36.84465 4583.479

An overview of the average computing time for

the UN2, HS, LS, and PRP algorithms over 20

test problems is shown in Table 3C. The

outcomes illustrate how effective the UN2

approach is, with an average computational time

of 0.52356s, the lowest of all methods. The HS

approach had an average duration of 20.83405s,

while the PRP method came in close behind with

an average time of 36.84465s. At 52.9318s, the

LS method's average time was significantly

higher. Within each method's group, variance

values show how different the computing times

are. According to the results, the UN2 approach

beats the HS, LS, and PRP methods and is the

most time-efficient.

 Table 3D: ANOVA ()

Source of Variation SS df MS F P-value F crit

Between Groups 30118.81 3 10039.6 2.779545 0.046774 2.724944

Within Groups 274508.9 76 3611.96

 Total 304627.7 79

In Table 3D, P is less than 0.05, with a value of

0.046774. This suggests that the average

computing time for the UN2, HS, LS, and PRP

algorithms differs significantly among the 20 test

problems.

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

40

From Figures 3 and 4, the new method UN2

performed better than the HS method and the

PRP method while the LS method had the least

performance for both the CPU time and number

of iterations.

CONCLUSION

The goal of this study is to unite a variety of

modified classical CGMs for unconstrained

optimization. Thus, by fusing traditional CGMs

with comparable numerators, two unique

modified CGMs have been created. The

integrated approaches' effectiveness is evaluated

through performance testing, wherein they are

contrasted with traditional CGMs. In terms of

convergence rates, accuracy of the solutions, and

computing speed, the results demonstrate that the

unified approaches are more effective and reliable

than the conventional methods. Future studies

will take into account the new approaches' global

convergence properties.

CONFLICTS OF INTEREST

The authors declare that they have no conflict of

interest

.

REFERENCES

Andrei, N. (2008). An unconstrained optimization

test functions. Advanced Modeling and

Optimization. 10 (1), 147-161.

Andrei, N. (2008a). New accelerated conjugate

gradient algorithms for unconstrained

Optimization. Research Institute for

Informatics, center for Modelling and

Optimization.

Bongartz, I., Conn, A. R., Gould, N. I. M. and

Toint, P. L. (1995). CUTE: Constrained

and unconstrained testing environments.

ACM Transactions on Mathematical

Software. 21, 123-160.

Dai, Y. H. and Yuan, Y. (1999). A nonlinear

conjugate gradient method with a strong

global convergence property. SIAM

Journal on optimization. 10, 177-182.

Dai, Y. H. and Liao, L. Z. (2001). New conjugacy

conditions and related nonlinear

conjugate gradient method. Applied

Mathematics and Optimization. 43, 87-

101.

Dai, Z. and Wen, F. (2012). Another improved

Wei-Yao-Liu nonlinear conjugate

gradient method with sufficient descent

property. Applied Mathematics and

Computation. 218, 7421-7430.

Dolan, E. D. and More, J. J. (2002).

Benchmarking optimization software

with performance profiles. Mathematical

Programming. 91, 201-213.

Du, X. W., Zhang, P. and Ma, W. (2016). Some

modified conjugate gradient methods for

unconstrained optimization. Journal of

Computational and Applied Mathematics.

305, 92-114.

Fang, M., Wang, M., Sun, M., and Chen, R.

(2021). A modified hybrid conjugate

gradient method for unconstrained

optimization. Journal of Mathematics,

Article ID 5597863, 9 pages.

https://doi.org/10.1155/2021/5597863.

Fletcher, R. (1987). Practical Method of

Optimization, 2nd Edn. New York: John

Wiley and Sons.

Fletcher, R. and Reeves, C. M. (1964). Function

minimization by conjugate gradients. The

Computer Journal. 7, 149-154.

Hager, W. W. and Zhang, H. (2006). A survey of

nonlinear conjugate gradient methods.

Pacific Journal of Optimization. 2, 35-58.

Hestenes, M. R. and Stiefel, E. (1952). Methods

of conjugate gradients for solving linear

systems. Journal of Research of the

National Bureau of Standards. 9, 409-

436.

Liu, Y. and Storey, C. (1991). Efficient

generalized conjugate gradient

algorithms part 1, theory. Journal of

Optimization theory and Application. 69,

322-340.

Mehamdia, A. E., Chaib, Y. and Bechouat, T.

(2023). Two modified conjugate gradient

methods for solving unconstrained

optimization and application. Rairo

Operations Research. 57, 333-350.

https://doi.org/10.1155/2021/5597863

Oluwaseun B. Onuoha et al. ISSN: 2811-2881

41

Mohammed, H., Mohd, R., Mustafa, M. and

Zabidin, S. (2015). A conjugate gradient

method with inexact line search for

unconstrained optimization. Applied

Mathematical Sciences. 9 (37), 1823-

1832.

Nezhadhosein, S. (2020). A Modified Descent

Spectral Conjugate Gradient Method for

Unconstrained Optimization. Iranian

Journal of Science and Technology,

Transactions A: Science. 45, 209-220.

Polak, E. and Ribiere, G. (1969). Note Sur la

Convergence de directions conjugees.

ESAIM: Mathematical Modelling and

Numerical Analysis. 3, 35-43.

Polyak, B. T. (1969). The conjugate gradient

method in extreme problems. USSR

Computer and Mathematical Physics. 9,

94-112.

Reid, J. K. (1970). On the method of conjugate

gradients for the solution of large sparse

systems of linear equations. In Catherine,

St. (Ed.). Large Sparse Sets of Linear

Equations (pp. 231-254). London:

Oxford Academic Press.

Zhang, L. (2009). New versions of the Hestenes-

Stiefel nonlinear conjugate gradient

method based on the secant condition for

optimization. Journal of Computational

and Applied Mathematics. 28, 111-

133.p.1-6.

