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ABSTRACT 
  

The integration of modified classical conjugate gradient methods (CGMs) for 

unconstrained optimization represents a crucial and evolving area of research 

within the field of optimization algorithms. Over time, numerous studies have put 

forth diverse modifications and novel approaches to enhance the effectiveness of 

classical CGMs. These modifications aim to address specific challenges and 

improve the overall performance of optimization algorithms in unconstrained 

scenarios. In order to tackle unconstrained optimization challenges and improve 

our understanding of their synergies, this ongoing study aims to unify different 

modified classical CGMs. Conventional CGMs have proven effective for 

optimization tasks, and a range of different approaches have been produced by 

carefully modifying these techniques. The main goal of this paper is to combine 

these modified versions, with particular attention to those that have similar 

numerators. The integration process involves systematically merging the 

advantageous aspects of these modified methods to develop not only innovative but 

also more resilient approaches to unconstrained optimization problems. The 

ultimate goal of this unification effort is to capitalize on the strengths inherent in 

different approaches to create a cohesive framework that significantly improves 

overall optimization performance. To thoroughly assess the efficacy of the 

integrated methods, a series of comprehensive performance tests are conducted. 

These tests include a meticulous comparison of outcomes with those of classical 

CGMs, providing valuable insights into the relative strengths and weaknesses of 

the modified approaches across diverse optimization scenarios. The evaluation 

criteria encompass convergence rates, solution accuracy, and computational 

efficiency. The conclusive outcome demonstrates that the unified approaches 

consistently outperform individual methods across all three crucial evaluation 

criteria. 
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INTRODUCTION  

The significance of unconstrained optimization 

problems lies in their applicability to a wide 

range of real-world situations. By allowing 

flexibility in variable values, these problems 

provide a natural representation for many 

optimization challenges. The role of CGMs in 

solving unconstrained problems is pivotal, as 

these methods offer efficient and robust 

approaches to iteratively approaching the optimal 

solution. Unconstrained optimization problems 

can arise directly in certain circumstances, but 

they can also arise indirectly by reformulating 

constrained optimization problems. By 

substituting the constraint with penalized terms in 

the objective function, it is generally possible to 

tackle an optimization problem as an 

unconstrained problem. 

Consider the function   minimizing an objective 

function that depends on real variables with no 

restrictions on their values. Let x     be a real 

vector with n   components, and let  :      

be a smooth function. The unconstrained problem 

is, then: 

          min f (x), x        (1.0) 

whose gradient is denoted by g(x). The iterative formula of the CGM is given by: 

                                                 (1.1) 

where      is the search direction and      is the 

step-length. For nonlinear CGMs, the current 

direction,    is a linear combination of the 

steepest descent direction and the previous 

direction     , i.e., 

                                                                           (1.2) 

where    is a scalar and      (  ) denotes the 

gradient. Several well-known classical CGMs, 

proposed by pioneers such as Hestenes and 

Stiefel (1952), Fletcher and Reeves (1964), Polak 

and Ribiere (1969), and Polyak (1969), Dai and 

Yuan (1999), Fletcher (1987), and Liu and Storey 

(1991), offer distinct ways to compute   . Their 

   formulae are given by: 
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where    represents difference in gradients given 

by           , ‖    ‖
      

       ‖ ‖ 

denotes the Euclidean norm and   denotes 

transpose. 

A line search method, which may be exact or 

inexact, is required to calculate the CGM's step 

length. The precise value of     is computed 

using an exact line search. This is typically 

tedious and susceptible to errors. Researchers 

therefore opted to use the inexact line search, 

which computes the value of    numerically, to 

navigate around this restriction. The strong Wolfe 
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(SW) line search, which is outlined below, is 

among the most widely used inexact line 

searches. 

                              {
 (       )   (  )       

    

| (        )
   |   |  

   | 
              (1.9)  

where        . 

 

REVIEW OF RELATED LITERATURES 

The CGM was invented by Hestenes and Stiefel 

(1952) in their seminal publication, which 

provided an algorithm for solving symmetric, 

positive-definite linear algebraic equations. Reid's 

1970 article introduced the conjugate gradient 

(CG) method as a primary area of active research 

in unconstrained optimization, following a brief 

period of stagnation. Fletcher and Reeves (1964) 

developed the FR method, which is widely 

regarded as the first nonlinear CG algorithm. 

Since then, several other CG algorithm versions 

have been proposed. These versions have made 

significant contributions to the field of 

unconstrained optimization. 

Based on similarities in their numerators and 

denominators, Hager and Zhang (2006) revealed 

different    possibilities for the early CGMs. 

They are methods with numerators of the form 

‖    ‖
  or      

    and denominators of the form 

‖  ‖
 ,   

     or    
   . They demonstrated that 

while methods with ‖    ‖
  in their numerators 

have a strong convergent property, they are prone 

to jamming. In contrast, methods with a common 

numerator of      
    have a built-in restart 

feature that solves the jamming issue, but they 

might not be generally convergent. To enhance 

the functionality of these traditional CGMs, 

researchers have thus made a variety of 

modifications utilizing various inexact line 

searches. Andrei (2008a), for example, developed 

new accelerated CG algorithms that are 

essentially modifications of the CG algorithm of 

Dai and Yuan. The accelerated technique 

proposed in the study was able to increase the 

algorithms' efficiency. In 2001, Dai and Liao 

introduced a novel conjugacy condition that gives 

the old conjugacy condition when the line search 

is exact but takes into account an inexact scheme. 

Two novel CGMs were proposed based on the 

new conjugacy requirement, one of which was 

found to be particularly efficient. A modified 

PRP CG approach was introduced by Mohammed 

et al. (2015) to solve large-scale unconstrained 

optimization problems where the parameter   
 

 
 

is restricted and the sufficient descent property is 

satisfied under the strong Wolfe-Powell line 

search.  

Zhang (2009) introduced two new variants of 

Hestenes-Stiefel nonlinear CGM, based on the 

secant condition commonly met by quasi-Newton 

methods, which are descent methods even with 

inexact line searches. A modified hybrid CGM 

was introduced by Fang et al. (2021) and has 

proven effective in handling large-scale, 

unconstrained optimization problems. Regardless 

of the line search, this approach consistently 

produces accurate directions at each iteration, 

demonstrating its effectiveness under the Wolfe 

line search. Based on a modified secant equation, 

Nezhadhosein (2020) suggested a modified 

descent-spectral CG approach. This method 

combines a suitable descent requirement with 

higher-order precision in estimating second-order 

curvature information. 

Dai and Wen (2012) presented two modified PRP 

and HS methods, with the following    formulae: 
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Again, Du et al. (2016) suggested two modified PRP and HS methods, where the resulting CG coefficients 

are defined as follows: 
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Recently, Mehamdia et al. (2023) proposed two modified CG methods in the form: 

           
     

‖    ‖
    |    

   |  

  
      |  

     |
,          (2.5) 

where    
|    
   |    

   

‖  ‖‖    ‖‖  ‖
     [   ]            . 

and 

       
     

‖    ‖
    |    

   |  

‖  ‖
    |  

     |
,        (2.6) 

where    [   ]            .  

All the aforementioned authors have contributed 

in one way or another to the field of 

unconstrained optimization by improving the 

traditional CG methods, though there were no 

special focus on specific sets of the traditional 

methods. To bridge this gap, this work is 

therefore motivated to give further improvements 

on the traditional methods by focusing 

specifically on those ones with similar 

numerators. By the unification of the two sets of 

methods with similar numerators, this study aims 

to address the jamming and convergence 

problems of these classical methods. 
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UNIFICATION OF THE CLASSICAL 

GRADIENT METHODS 

To generate new methods that could be applied to 

the solution of nonlinear, unconstrained 

optimization problems, we combine the classical 

gradient methods listed in Section 1 that have 

similar numerators. The following Lemmas are 

applied in the derivation of the classical CGMs. 

 

LEMMA 1 

 The search direction,            are conjugate i.e., 

                              
                                                     (3.1) 

LEMMA 2 

In a conjugate direction algorithm, 

                
                                          (3.2) 

 

LEMMA 3 

The gradient and the search direction are conjugate i.e., 

               
                                  (3.3) 

 

CLASSCAL CGMs WITH SAME 

NUMERATORS 

From the conventional CGMs given by (1.3) - 

(1.8), there are two sets of CGMs with similar 

numerators. The first set has the same numerator 

‖    ‖
 , while the second set has a similar 

numerator      
   . In this subsection, we show 

derivation of two unified CGMs, based on 

Lemmas 1, 2 and 3. 

Unified CGM with Numerator ‖    ‖
  

The conventional CGMs with same numerator 

‖    ‖
  are    

      
    and   

  . Let   
    

represents a unified CGM that combines these 

three classical CGMs. Then: 
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By further simplification of the numerator, we have: 
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By using (1.2) together with Lemmas 2 and 3, the above becomes:  
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Unified CGM with Numerator      
    

As listed in Section 1, the CGMs   
  ,   

   , and  

  
   have a common numerator      

   . By 

denoting a CGM combining these three classical 

CGMs by   
   , we have: 
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Factorizing the numerator where           , we have: 
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The unified classical conjugate gradient method with similar numerator      
    is thus given by: 
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.         (3.5)  

Thus, Equations (3.4) and (3.5) depict unified 

versions of the classical CGMs, which we obtain 

by applying Lemmas 1, 2, and 3 to the 

simplification procedures of the traditional 

methods with the same numerators ‖    ‖
  and 

     
   . The UN1 and UN2 approaches' enhanced 

performance is made possible by the term 

"‖  ‖
 " being included in the numerators. A 

numerical experiment is carried out to 

demonstrate the effectiveness of the new 

approaches in contrast to the conventional 

methods; the specifics are provided in the next 

section. The following algorithm is suggested in 

order to implement the two new techniques: 

 

Unified CGMs Algorithm 

 Step 1 Select the initial starting point        and compute:     (  ) and      (  ). Set 

       and     

Step 2 If ‖  ‖    
    then stop; otherwise continue with step 3. 

Step 3 Determine the step length    by (1.9). 

Step 4   Update the variables as:                Compute      and        

Step 5   Determine   
    and   

    by (3.4) and (3.5). 

Step 6  Compute the search direction by (1.2). 

Step 7 Set        and return to Step 2. 

 

RESULTS AND DISCUSSION 

In comparison to conventional methods, the 

numerical performance of the two proposed 

unified approaches is presented in this section. A 

numerical experiment refers to a simulation or 

computation conducted on a computer to analyze 

and understand a phenomenon, system, or 

process. Instead of physical experimentation, 

numerical experiments use mathematical models 

and algorithms to explore and study various 

scenarios, helping researchers gain insights and 

make predictions. Thus, in this study, twenty (20) 
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large-scale, unconstrained minimization 

problems, each of dimension 5000, were 

subjected to a numerical experiment in order to 

test the efficacy of the two new methods in 

comparison to the conventional methods. To 

compute the step length, the SW line search is 

used for efficiency and cost-effectiveness. Andrei 

(2008) compiled the test problems, which were 

taken from the CUTE library. In an effort to 

provide an environment for testing both 

constrained and unconstrained nonlinear 

optimization methods, Bongartz et al. (1995) 

developed the CUTE package. The test problems' 

names, dimensions, initial points, and sources are 

listed in Table 1, while Tables 2 and 3 include the 

numerical results for the number of iterations and 

CPU time. 

The computational algorithm was implemented 

using MATLAB R2007b (7.5.0.342). The 

numerical codes were run on a Dell PC with the 

specifications ``Intel (R) CoreTM i3, 2.20GHz 

processor, 4GB RAM, and windows 10 pro–

operating system of 64-bit". The iterations were 

terminated when ‖  ‖    
  , and a failure 

declared if this condition was not satisfied after 

2000 iterations. ITR indicates the number of 

iterations, while CPU indicates the processing 

time (in seconds), according to Tables 2 and 3.  

Dolan and More (2002) presented their proposed 

graphical tool for benchmarking algorithms as 

“Performance profiles", which they described as 

the cumulative function for a performance metric, 

which could be the ratio of the computing time of 

the solver against the best time of all the solvers 

or the ratio of the number of iterations of the 

solver to the best minimum number of all the 

solvers. To compare the performance of the two 

novel methods to the existing methods, the 

performance profiles of Dolan and Morè were 

used. Figures 1 through 4 show the comparison 

based on CPU time and number of iterations.  

The data displayed in Tables 2 and 3 were used in 

statistical analysis to more precisely quantify the 

variations in the performances of the new 

methods UN1 and UN2. Specifically, we 

performed an analysis of variance (ANOVA) test 

with a level of significance of       . The 

statistical results for the UN1 technique in regard 

to the FR, CD, and DY techniques are displayed 

in Tables 2A, 2B, 2C, and 2D, while the 

statistical results for the UN2 method in relation 

to the HS, LS, and PRP methods are displayed in 

Tables 3A, 3B, 3C, and 3D. The results of the 

statistical analysis indicate that the UN1 and UN2 

approaches are better than the ones that are 

already in use because of their much shorter 

average computational times and iteration counts. 
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Table 1: Details of the Test Problems (Dimension 5000)    

TEST PROBLEMS                        INITIAL POINTS                           SOURCES 

Extended Block Diagonal               [0.1, 0.1…, 0.1]                               Bongartz et al. (1995) 

Power function                                [1, 1, …, 1]                                      Andrei (2008)  

Arwhead Function                          [1, 1, …, 1]                                       Andrei (2008) 

Diagonal 5 Function                       [1.1, 1.1, …, 1.1]                              Andrei (2008) 

Qf1 Function                                   [1, 1, …, 1]                                       Bongartz et al. (1995) 

Qf2 Function                                   [0.5, 0.5, …, 0.5]                              Bongartz et al. (1995) 

Chebyquad Function                       [1, 1, …, 1]                                       Bongartz et al. (1995) 

Diagonal 4 function                         [1, 1, …, 1]                                      Andrei (2008) 

Arglinc Function                             [1, 1, …, 1]                                       Andrei (2008) 

Brownbs Function                           [1, 1, …, 1]                                       Bongartz et al. (1995) 

Bdexp Function                               [1, 1, …, 1]                                       Bongartz et al. (1995) 

Bdqrtic Function                              [1, 1, …, 1]                                      Andrei (2008) 

Staircase 1 Function                         [1, 1, …, 1]                                     Andrei (2008) 

Staircase 2 Function                         [0, 0, …, 0]                                     Andrei (2008) 

Liarwhd Function                             [4, 4, …, 4]                                     Andrei (2008) 

Extended Beale Function                 [1,0.8, …, 1, 0.8]                            Andrei (2008) 

Extended Wood Function                [-3,-1,-3,-1,…, -3,-1,-3,-1]              Andrei (2008) 

Extended Tridigonal-1 Function      [2, 2, …, 2]                                     Andrei (2008) 

Hager Function                                [1, 1, …, 1]                                      Andrei (2008) 

Generalised Rosenbrock                  [-1.2,1, …, -1.2,1]                           Andrei (2008) 

 

 Table 2: Test results of the UN1, FR, CD, and DY methods 

TEST PROBLEMS        UN1         FR         CD         DY 

  ITR/CPU ITR/CPU ITR/CPU ITR/CPU 

Extended Block Diagonal 2/0.044 492/18.517 22/0.481 116/2.484 

power function 1/0.036 1/0.037 1/0.047 1/0.041 

Arwhead Function 6/0.554 103/2.627 2000/52.491 109/2.693 

Diagonal 5 Function 5/0.091 13/0.227 7/0.217 23/0.404 

Qf1 Function 4/0.211 2000/83.544 2000/50.072 233/6.334 

Qf2 Function 10/0.205 10/0.196 39/0.755 2/0.048 

Chebyquad Function 5/0.161 471/6.417 3/0.074 2/0.048 

Diagonal 4 function 3/0.142 17/0.423 17/0.339 15/0.034 

Arglinc Function 1/0.052 1/0.052 1/0.052 1/0.0313 

Brownbs Function 8/1.657 6/0.49 22/1.034 9/0.052 

Bdexp Function 3/0.119 3/0.078 2/0.05 3/0.443 

Bdqrtic Function 4/1.494 2000/241.031 2000/193.278 2000/0.084 

Staircase 1 Function 1/0.018 1/0.02 1/0.019 1/217.868 

Staircase 2 Function 3/0.096 16/0.294 92/1.706 2/0.019 

Liarwhd Function 8/1.065 2000/129.882 2000/58.106 2000/0.043 

Extended Beale Function 4/2.162 2000/266.686 2000/145.709 2000/83.873 

Extended Wood Function 8/2.507 1680/192.577 2000/110.738 121/317.994 

Extended Tridigonal Function 4/0.495 2000/155.925 2000/56.291 2000/14.857 

Hager Function 7/1.938 17/0.816 11/0.683 8/0.429 

Generalised Rosenbrock 

Function 3/0.157 2000/207.261 134/3.86 2000/209.261 
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Figure 1: Performance Profile on the Number of Iterations (UN1 versus FR, CD, and DY) 

 

Table 2A: Statistical Comparison of UN1 Method with FR, CD and DY Methods in Terms of Number of Iterations  

Groups Count Sum Average Variance 

UN1 20 90 4.5 6.789474 

FR 20 14831 741.55 857901.9 

CD 20 14352 717.6 933178.4 

DY 20 10646 532.3 759385.5 

 

Table 2A presents a comparative analysis of the 

efficiency of UN1, FR, CD, and DY methods 

based on the number of iterations across 20 test 

problems. The UN1 approach demonstrated the 

lowest average number of iterations (4.5), 

suggesting that it is an efficient way of reaching 

convergence. On the other hand, the DY 

technique showed a noticeably greater average 

number of iterations (532.3), with the greatest 

average (741.55) being achieved by the FR 

approach, followed by the CD method (717.6). 

Variance values shed light on how many 

iterations are distributed among the methods in 

each group. These results indicate that, in terms 

of iteration count efficiency, the UN1 approach 

performs better than the DY, CD, and FR 

methods on average, making it the better option 

for reaching convergence in iterative processes. 
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Table 2B: ANOVA (      ) 

Source of Variation SS df MS F P-value F crit 

Between Groups 7045112 3 2348371 3.683036 0.015577 2.724944 

Within Groups 48458979 76 637618.1 

   

       Total 55504091 79         

Table 2B reveals that there is a significant difference in the average number of iterations recorded for each 

approach, as indicated by the P value (0.015577), which is less than 0.05. 

 
Figure 2: Performance Profile with respect to CPU time (UN1 versus FR, CD, and DY) 

 

Table 2C: Statistical Results Comparing UN1 Method with FR, CD and DY Methods with Respect to CPU Time 

Groups Count Sum Average Variance 

UN1 20 13.204 0.6602 0.676679 

FR 20 1307.1 65.355 9073.086 

CD 20 676.002 33.8001 3148.91 

DY 20 857.0403 42.85202 8576.865 

 

The average computation times for the UN1, FR, 

CD, and DY approaches over 20 test problems 

are summarized in the above table. The UN1 

approach showed the least time required for 

computation on average (0.6602s), highlighting 

its effectiveness. Following closely is the CD 

method with an average time of 33.8001s, while 

the DY method recorded an average time of 

42.85202s. At 65.355s, the FR technique yielded 

a comparatively greater average time. The range 

of computation times for each method within its 

group is shown by the variance values. As a 

result, the UN1 approach is a better option for 

computational tasks because it is the fastest of the 

CD, DY, and FR approaches. 
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  Table 2D: ANOVA (      ) 

Source of 

Variation SS Df MS F P-value F crit 

Between Groups 43239.26 3 14413.09 2.771809 0.047218 2.724944 

Within Groups 395191.2 76 5199.884 

   

       Total 438430.5 79         

 

The P value (0.047218) is less than 0.05. This is 

an indication that there is a significant difference 

in the average computational time for UN1, FR, 

CD and DY methods, as demonstrated in Table 

2C. 

From Figures 1 and 2, it is obvious that amongst 

the four methods being compared, the UN1 

method performs better than the DY and CD 

methods while the FR method has the least 

performance. 

 

Table 3: Test results of the UN2, HS, LS, and PRP methods 

PROBLEMS        UN2         HS          LS         PRP 

  ITR/CPU ITR/CPU ITR/CPU ITR/CPU 

Extended Block Diagonal 2/0.044 882/20.586 102/3.841 107/4.066 

power function 1/0.0372 1/0.037 1/0.043 1/0.037 

Arwhead Function 2/0.444 30/0.727 94/2.61 216/5.891 

Diagonal 5 Function 2/1.159 3/0.055 25/0.439 9/0.205 

Qf1 Function 2/0.182 167/2.561 2000/63.103 492/13.803 

Qf2 Function 2/0.244 3/0.053 19/0.473 19/0.437 

Chebyquad Function 2/0.078 3/0.049 2000/27.755 2000/27.768 

Diagonal 4 function 2/0.142 4/0.123 60/2.048 37/1.234 

Arglinc Function 2/0.052 1/0.052 1/0.052 1/0.052 

Brownbs Function 2/1.167 3/0.138 11/0.73 11/0.739 

Bdexp Function 2/0.119 3/0.08 3/0.079 3/0.078 

Bdqrtic Function 2/1.801 2000/152.458 2000/245.83 2000/213.384 

Staircase 1 Function 2/0.018 1/0.019 1/0.019 1/0.028 

Staircase 2 Function 2/0.101 7/0.154 45/1.076 45/1.043 

Liarwhd Function 2/0.998 6/0.261 2000/89.95 45/17.907 

Extended Beale Function 2/1.741 30/2.688 2000/216.515 446/100.48 

Extended Wood Function 2/0.948 14/1.054 643/69.907 167/21.634 

Extended Tridigonal Fu1nction 2/0.723 795/25.661 2000/118.307 2000/122.625 

Hager Function 2/0.311 13/0.551 132/4.029 37/1.118 

Generalised Rosenbrock 

Function 2/0.162 2000/209.374 2000/211.83 2000/204.364 
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Figure 3: Performance Profile on the Number of Iterations (UN2 versus HS, LS, and PRP) 

 

Table 3A: Statistical Results for UN2 VS HS, LS and PRP Based on Number of Iterations 

Groups Count Sum Average Variance 

UN2 20 39 1.95 0.05 

HS 20 5966 298.3 403183.9 

LS 20 15137 756.85 894758.9 

PRP 20 9637 481.85 625828.9 

 

The above table provides statistical results 

comparing the efficiency of the UN2, HS, LS, 

and PRP methods based on the number of 

iterations across 20 test problems. On average, 

the UN2 method demonstrated the lowest number 

of iterations (1.95), indicating its efficiency in 

converging to solutions. In contrast, the HS 

method exhibited a significantly higher average 

number of iterations (298.3), followed by the 

PRP method (481.85), and the LS method with 

the highest average (756.85). Variance values 

reveal the dispersion of iteration counts within 

each method's group. These results suggest that, 

on average, the UN2 method is more efficient in 

terms of the number of iterations compared to 

HS, PRP, and LS methods. 

 

  Table 3B: ANOVA (      ) 

Source of Variation SS df MS F P-value F crit 

Between Groups 6037925 3 2012642 4.184783 0.008508 2.724944 

Within Groups 36551662 76 480942.9 

   

       Total 42589587 79         

 

The P value (0.008508) is less than 0.05, showing a significant difference in the average number of 

iterations needed by UN2, HS, LS, and PRP methods to achieve convergence.  
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Figure 4: Performance Profile with respect to CPU time (UN2 versus HS, LS, and PRP) 

 

Table 3C: Statistical Analysis of UN2 Method versus HS, LS and PRP Based on Computational Time 

Groups Count Sum Average Variance 

UN2 20 10.4712 0.52356 0.336037 

HS 20 416.681 20.83405 3131.469 

LS 20 1058.636 52.9318 6732.555 

PRP 20 736.893 36.84465 4583.479 

 

An overview of the average computing time for 

the UN2, HS, LS, and PRP algorithms over 20 

test problems is shown in Table 3C. The 

outcomes illustrate how effective the UN2 

approach is, with an average computational time 

of 0.52356s, the lowest of all methods. The HS 

approach had an average duration of 20.83405s,  

 

while the PRP method came in close behind with 

an average time of 36.84465s. At 52.9318s, the 

LS method's average time was significantly 

higher. Within each method's group, variance 

values show how different the computing times 

are. According to the results, the UN2 approach 

beats the HS, LS, and PRP methods and is the 

most time-efficient.  

  Table 3D: ANOVA (      ) 

Source of Variation SS df MS F P-value F crit 

Between Groups 30118.81 3 10039.6 2.779545 0.046774 2.724944 

Within Groups 274508.9 76 3611.96 

   

       Total 304627.7 79         

In Table 3D, P is less than 0.05, with a value of 

0.046774. This suggests that the average 

computing time for the UN2, HS, LS, and PRP 

algorithms differs significantly among the 20 test 

problems.  
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From Figures 3 and 4, the new method UN2 

performed better than the HS method and the 

PRP method while the LS method had the least 

performance for both the CPU time and number 

of iterations. 

CONCLUSION 

The goal of this study is to unite a variety of 

modified classical CGMs for unconstrained 

optimization. Thus, by fusing traditional CGMs 

with comparable numerators, two unique 

modified CGMs have been created. The 

integrated approaches' effectiveness is evaluated 

through performance testing, wherein they are 

contrasted with traditional CGMs. In terms of 

convergence rates, accuracy of the solutions, and 

computing speed, the results demonstrate that the 

unified approaches are more effective and reliable 

than the conventional methods. Future studies 

will take into account the new approaches' global 

convergence properties. 
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