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ABSTRACT 
  

The distribution of data can be normal or followed a certain 

distribution. Therefore, data collected requires checking normality 

assumption before applied to any hypothesis testing. Hence, this 

work investigates the robustness and asymptotic properties of one 

sample test statistics when data follows a particular distribution in 

order to identify the best one to test hypothesis about one population 

parameter on one sample tests statistics. The one sample test 

statistics considered are t, z, Sign and Wilcoxon Sign Rank test. A 

simulation replicated 1000 times was conducted at three sample sizes 

which are 10, 20 and 40 from uniform, exponential, and gamma 

distributions. Data analysis revealed that the z-test is the most 

accurate for all the sample sizes for a data from uniform distribution 

followed by t-test at small and moderate sample sizes while 

Wilcoxon sign rank-test is the most robust test to gamma and 

exponential distributions at all the sample sizes. 
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INTRODUCTION  

The distribution of student’s t statistic for non-

normal (followed another distribution) universe 

has been the subject of numerous studies from 

1930’s to the present (Cicchitelli, 1989; Usman 

and Oyejola, 2013; Akeyede et al., 2014 and 

Thomas, 2016).  Meanwhile, the student’s t 

statistics is not robust to outlier. Robust statistics 

therefore, addresses the problem of data that 

deviates from normality assumptions or contain 

outliers (Zhao et al., 2019). Statistical test or 

models are based on a set of assumptions; the 

most important includes the distribution of key 

variables, for examples, the normal distribution of 

data, model specification, model linearity or 

nonlinearity. Some of these assumptions are 

critical to the estimation process: if they are 

violated, the estimates become unreliable.  

When there are outliers or more broadly when 

there are deviations from the distributional 

assumptions, robust statistics should function 

nearly as well as they should (Hampel, et al., 

2011). Assuming that observations are regularly 

distributed is standard practice in statistics. The 

inference fails if this assumption is broken 

because it forms the basis of the entire statistical 

system. As a result, before doing any statistical 

data analysis, it is imperative to verify or evaluate 

the validity of this assumption. The significance 

of testing assumptions before use is 

underappreciated by many scholars. One such 

assumption is seen in the t-test (normality, 

homoscedasticity and continuity of the data set). 

If any of these presumptions are broken, the test 

may be insufficient and a more reliable test may 

be performed to provide reliable results. The most 

commonly used statistical methods are 

correlation, regression and experimental design 

(Verbunck et al., 2018). But all of them are based 

on one basic assumption, that the observation 

follows normal (Gaussian) distribution (Das and 

Imon, 2016). So, it is assumed that the population 

from where the sample is drawn is normally 

distributed. For this reason, the inferential 

methods require checking the normality 

assumption.  

The t, z, sign and Wilcoxon sign rank tests are 

statistical tests used to determine the significance 

difference between two groups of data or between 

one groups with a standard value. They are 

essential tools in statistical analysis and can help 

researchers determine the significance differences 

between groups in their data or between one 

group and a standard value. Hence, these tests 

were chosen because this research article wants to 

provide a suitable test of one sample test of 

location to the selected distributions at small, 

moderate and large sample sizes.  

Many research contributions have been made, 

such as the analysis of the two-sample t-

robustness test and the relationship between the 

population distribution's shape and the likelihood 

ratio test robustness (Bowden et al., 2017 and 

2019; Hartwig et al., 2017; Qin and Priebe 2017; 

Choi et al., 2018; Anton et al., 2019 and Zhao et 

al., 2019 and 2020). The creation of novel 

techniques has been a major focus of current 

robustness research. In addition, Slob and 

Burgess (2020) compared the robustness of 

mendelian randomization method (MR) and 

contamination mixture method using type I error 

criterion. Their analysis recommends 

investigators to perform variety of robust 

methods.  

Bradley make a comprehensive series of studies 

of robustness to truly non-normal distributions 

(1977, 1978, 1980a, 1980b, 1980c). In his 

research, he examined the performance of the 

one-sample and independent samples t-tests. 

Bradley contrasted the results of the t-test when 

samples were taken from an exponential 

distribution and results when samples were taken 

from a bell-shaped (basically normal) 

distribution. He notes that the amount of alpha, 

the position of the rejection region, sample size, 

and the makeup of the population from which the 

sample was selected are all crucial considerations 

in one-sample t-test research (Bradley, 1978). 
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Bradley came to the conclusion that an alpha 

value of 0.05 is the alpha value that contributes 

the most resilience. Even though Bradley's set of 

studies is the most in-depth investigation of the 

robustness to non-normal distribution, but he 

hasn't looked at the non-parametric tests on other 

distributions and also concentrated on large 

sample size only. 

Latest research by Sheng and Hyunseng (2021) 

expanded the Anderson Rubin test (AR), 

conditional likelihood ratio test (CLR), and 

Kleibergen test (K) of the exposure impact in the 

two sample summary data mendelian 

randomization (MR) when the effect is violated 

with the exposure. By fixing the parameters for 

the simulation, they compared how well these 

tests statistically performed on the simulated data 

from normal, binomial, and uniform distribution. 

Their investigation was 1000 times replicated, 

and the findings suggest using AR to evaluate 

faulty instruments. Burges et al. (2020); Qi and 

Chatterjee, 2020; and Slob and Burgess, 2020 

using an ordinary least square regression. 

Tchetgen et al. (2017), Verbunck et al. (2018), 

Zhao et al. (2018), Burges et al. (2020) and Zhao 

et al. (2018). Abdullah and Omar (2017) 

demonstrate how incorrect model selection 

influences the significance level in hypothesis 

testing and come to the conclusion that this is true 

even in the asymptotic scenario.  

This research article provides a suitable test 

among t, z, sign and Wilcoxon sign rank tests to 

the selected distributions which are exponential, 

gamma and uniform distributions at small, 

moderate and large sample sizes, which show 

when the various selection procedures are robust 

as the sample sizes increase. 

METHOD AND MATERIAL 

Source of Data 

The data used in this article for analysis were 

obtained by simulation from three distributions 

which are exponential, gamma, and uniform 

distributions. The mean of each distribution 

serves as the foundation for all speculated values. 

To estimate the parameter fixed for each 

distribution's simulation, the mean (hypothesized 

value) is employed. Simulated data with sample 

sizes of 10, 20, and 40, which represent small, 

moderate, and large sample sizes, respectively, 

were used to investigate the relative performance 

of the three tests.  

Simulation Procedure 

Data would be simulated to test for hypothesis 

(Ho: µ = 0.1) from exponential distribution, the 

parameter = 10 which is estimated using method 

of moment is as follows:  

   ( )  
 

 
            (1) 

  
 

 
 
 

   
    

The data were replicated 1000 times for each sample size, and the 1000 iterations computed throughout the 

investigation were used to count the type I errors that were made. 

The following R codes is therefore used for the simulation 

       (    )                                      

>xi=rexp(10,10) 

>xi=rexp(20,10) 

>xi=rexp(40,10)  

Data were simulated to test for hypothesis (Ho: µ = 0.4) from gamma distribution, the parameters        

and       were estimated using method of moment as follows: 

Mean =                     (2) 

Variance =   =1              (3) 

Solving the two equations simultaneously, we have        and       that were used for the simulation 

from the gamma distribution. 
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 The following R codes is therefore used for the simulation 

         (          )                                       

>xi=rgamma(10,0.16,2.5) 

>xi=rgamma(20,0.16,2.5) 

>xi=rgamma(40,0.16,2.5) 

Data would be simulated to test for hypothesis (Ho: µ = 0) from uniform distribution, the parameters 

     and     were estimated using method of moment as follows: 

      ( )  
   

 
               (4) 

          ( )  
(   ) 

  
              (5) 

Solving the two equations simultaneously the parameter values would be      and     

The following R codes are therefore used for the simulation 

        (      )                                      

>xi=runif(10,-2,2) 

>xi=runif(20,-2,2) 

>xi=runif(40,-2,2) 

The parameter values are obtained by initial guess in most researches, but in this article we have tried to 

obtain the parameter values using method of moment to at least reduced biasedness.  A more detailed r code 

of the analysis can be found in appendix. 

 

RESULTS 

Using t, z, Sign, and Wilcoxon sign rank tests, the 

analysis of simulated data from an exponential 

distribution at sample sizes of 10, 20, and 40 

representing small, moderate, and large sample 

sizes, respectively was done to ascertain their 

relative performance. The table below 

demonstrates this: 

 
Table 1: Type I Error of the Four Tests under Exponential Distribution 

___________________________________________________________________________ 

Sample Size t-test  z-test  Sign-test Wilcoxon Sign Rank-test 

___________________________________________________________________________ 

10  1000   1000  1000  0  

20  1000   1000 1000  0    

40  1000   1000 1000  0 

Total   3000   3000 3000  0 

  

____________________________________________________________________________ 
 

Table 1 lists the total number of type I errors 

made by the four tests that were used to examine 

the data obtained from an exponential distribution 

using various sample sizes. The significance 

value is set as 5% (alpha level), while the p-value 

is generated automatically by the r package 

during the analysis and if p-value is less than or 

equal to the alpha value, a type I error is  

 

committed (i.e., wrong rejection of the null 

hypothesis). The Wilcoxon sign rank-test 

performs the best across all sample sizes, 

recording zero type I errors out of a total of 1000 

replications, in contrast to other tests that 

incorrectly rejected the true null hypothesis 1,000 

times out of a total of 1000 replications. The 

Wilcoxon sign rank-test often performs the best 
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for the total sample sizes. The graphs below gave the clear picture of the above table.  

 

Figure 1 above is a graph of bar chart that displays the 

number of type I errors made by a t-test for data that was 

generated using an exponential distribution, out of a total 

of 1000 simulation iterations with a sample size of 10 

(i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-2 above is a graph of bar chart that displays the 

number of type I errors made by a z-test for data that was 

generated using an exponential distribution, out of a total 

of 1000 simulation iterations with a sample size of 10 

(i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-3 above is a graph of bar chart that displays the 

number of type I errors made by a Sign test for data that 

was generated using an exponential distribution, out of a 

total of 1000 simulation iterations with a sample size of 

10 (i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-4 above is a graph of a bar chart that displays the 

number of type I errors made by a Wilcoxon Sign Rank 

test for data that was generated using an exponential 

distribution, out of a total of 1000 simulation iterations 

with a sample size of 10 (i.e., 0 wrong rejections in 1000 

replications). 
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FIGUER 2: Number of Type 1 Error Committed by Z-Test
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FIGUER 3: Number of Type 1 Error Committed by Sign-Test
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FIGUER 4: Number of Type 1 Error Committed by Wilcoxn Sign Rank Test
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Figure-5 above is a graph of bar chart that displays the 

number of type I errors made by a t test for data that 

was generated using an exponential distribution, out of 

a total of 1000 simulation iterations with a sample size 

of 20 (i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-6 above is a graph of bar chart that displays the 

number of type I errors made by a z-test for data that was 

generated using an exponential distribution, out of a total 

of 1000 simulation iterations with a sample size of 20 

(i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-7 above is a graph of bar chart that displays the 

number of type I errors made by a Sign test for data that 

was generated using an exponential distribution, out of 

a total of 1000 simulation iterations with a sample size 

of 20 (i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-8 above is a graph of bar chart that displays the 

number of type I errors made by a Wilcoxon Sign Rank 

test for data that was generated using an exponential 

distribution, out of a total of 1000 simulation iterations 

with a sample size of 20 (i.e., 0 wrong rejections in 1000 

replications). 
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FIGUER 6: Number of Type 1 Error Committed by Z-Test
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FIGUER 7: Number of Type 1 Error Committed by Sign Test
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FIGUER 8: Number of Type 1 Error Committed by Wilcoxon Sign Rank Test
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Figure-9 above is a graph of bar chart that displays the 

number of type I errors made by a t-test for data that 

was generated using an exponential distribution, out of a 

total of 1000 simulation iterations with a sample size of 

40 (i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-10 above is a graph of bar chart that displays the 

number of type I errors made by a z test for data that was 

generated using an exponential distribution, out of a total 

of 1000 simulation iterations with a sample size of 40 

(i.e., 1000 wrong rejections in 1000 replications). 

 

 

 

 

 

 

Figure-11 above is a graph of bar chart that displays the 

number of type I errors made by a Sign test for data that 

was generated using an exponential distribution, out of a 

total of 1000 simulation iterations with a sample size of 

40 (i.e., 1000 wrong rejections in 1000 replications). 

 

 

Figure-12 above is a graph of bar chart that displays the 

number of type I errors made by a Wilcoxon Sign Rank 

test for data that was generated using an exponential 

distribution, out of a total of 1000 simulation iterations 

with a sample size of 40 (i.e., 0 wrong rejections in 1000 

replications). 
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FIGUER 10: Number of Type 1 Error Committed by Z-Test
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FIGUER 11: Number of Type 1 Error Committed by Sign-Test
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FIGUER 12: Number of Type 1 Error Committed by Wilcoxon Sign Rank Test
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Table 2: Type I Error of the Four Tests under Gamma Distribution 

___________________________________________________________________________ 

Sample Size t-test  z-test  Sign-test Wilcoxon Sign Rank-test 

___________________________________________________________________________ 

10       31   707 1000   0 

20     471   944 1000   0 

40   1000   808 1000   0 

Total    1502 2459 3000   0 

 

____________________________________________________________________________ 

Table-2 list the total number of type I errors made 

by the four tests that were performed to examine 

the data obtained from the gamma distribution 

using various sample sizes. The Wilcoxon Sign 

Rank-test, which does make type I error at all 

sample sizes, is the best. This indicated that 

Wilcoxon sign rank test have the ability of 

identifying a true null hypothesis for data from 

gamma distribution at small, moderate and large 

sample sizes that make it better than its 

counterpart. The t-test comes in second with 31 

rejections out of 1000 iterations at small sample 

sizes and 471 rejections out of 1000 iterations at 

intermediate sample sizes. For the combined 

sample sizes, the Wilcoxon Sign Rank-test 

performs the best overall. This can be shown in 

the following graphs below: 

 

Figure-13 above is a graph of bar chart that displays the 

number of type I errors made by a t-test for data that was 

generated using gamma distribution, out of a total of 

1000 iterations at a sample size of 10 (i.e., 31 wrong 

rejections in 1000 replications). 

 

 

Figure-14 above is a graph of bar chart that displays the 

number of type I errors made by z-test for data that was 

generated using gamma distribution, out of a total of 

1000 iterations at a sample size of 10 (i.e., 707 wrong 

rejections in 1000 replications). 
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FIGURE 14: Number of Type I Error Committed by Z-Test
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Figure-15 above is a graph of bar chart that displays the 

number of type I errors made by Sign test for data that 

was generated using gamma distribution, out of a total 

of 1000 iterations at a sample size of 10 (i.e., 1000 

wrong rejections in 1000 replications). 

 

 

Figure-16 above is a graph of bar chart that displays the 

number of type I errors made by Wilcoxon Sign Rank test 

for data that was generated using gamma distribution, out 

of a total of 1000 iterations at a sample size of 10 (i.e., 0 

wrong rejections in 1000 replications). 

 

 

 

 

Figure-17 above is a graph of bar chart that displays the 

number of type I errors made by t-test for data that was 

generated using gamma distribution, out of a total of 

1000 iterations at a sample size of 20 (i.e., 471 wrong 

rejections in 1000 replications). 

 

 

Figure-18 above is a graph of bar chart that displays the 

number of type I errors made by z-test for data that was 

generated using gamma distribution, out of a total of 

1000 iterations at a sample size of 20 (i.e., 944 wrong 

rejections in 1000 replications). 

 

 

FALSE

FIGURE 15: Number of Type I Error Committed by Sign-Test

TYPE I ERROR

F
R

E
Q

U
E

N
C

IE
S

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

TRUE

FIGURE 16: Number of Type I Error Committed by Wilcoxon Sign Rank Test
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FIGURE 17: Number of Type I Error Committed by T-Test
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FIGURE 18: Number of Type I Error Committed by Z-Test
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Figure-19 above is a graph of bar chart that displays the 

number of type I errors made by Sign test for data that 

was generated using gamma distribution, out of a total 

of 1000 iterations at a sample size of 20 (i.e., 1000 

wrong rejections in 1000 replications). 

 

 

Figure-20 above is a graph of bar chart that displays the 

number of type I errors made by Wilcoxon Sign Rank 

test for data that was generated using gamma 

distribution, out of a total of 1000 iterations at a sample 

size of 20 (i.e., 0 wrong rejections in 1000 replications). 

 

 

 

Figure-21 above is a graph of bar chart that displays the 

number of type I errors made by t-test for data that was 

generated using gamma distribution, out of a total of 

1000 iterations at a sample size of 40 (i.e., 1000 wrong 

rejections in 1000 replications). 

 

 

Figure-22 above is a graph of bar chart that displays the 

number of type I errors made by z-test for data that was 

generated using gamma distribution, out of a total of 1000 

iterations at a sample size of 40 (i.e., 808 wrong rejections 

in 1000 replications). 
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FIGURE 20: Number of Type I Error Committed by Wilcoxon Sign Rank Test
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FIGURE 21: Number of Type I Error Committed by T-Test
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FIGURE 22: Number of Type I Error Committed by Z-Test
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Figure-23 above is a graph of bar chart that displays the 

number of type I errors made by Sign test for data that 

was generated using gamma distribution, out of a total 

of 1000 iterations at a sample size of 40 (i.e., 1000 

wrong rejections in 1000 replications). 

 

 

Figure-24 above is a graph of bar chart that displays the 

number of type I errors made by Wilcoxon Sign Rank test 

for data that was generated using gamma distribution, out of 

a total of 1000 iterations at a sample size of 40 (i.e., 0 wrong 

rejections in 1000 replications). 

 

 

Table 3: Type I Error of the Four Tests under Uniform Distribution 

___________________________________________________________________________ 

Sample Size t-test  z-test  Sign-test Wilcoxon Sign Rank-test 

___________________________________________________________________________ 

10   953   926 1000   959 

20   955   917                      1000   959 

40   940   904 1000   945 

Total  2848                      2747 3000 2863 

 

____________________________________________________________________________ 
Table-3 Specify how many type I errors were 

made by the four tests that were used to examine 

the data obtained from a uniform distribution 

using various sample sizes. Z-test performs the 

best across all sample sizes, with 926, 917, and 

904 rejections per 1000 iterations, respectively. 

T-test is next, with 953, 955, and 940 rejections 

per 1000 iterations, respectively. Z-tests work 

well for combined sample sizes in general. This is 

shown in the diagrams below: 
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FIGURE 24: Number of Type I Error Committed by Wilcoxon Sign Rank Test
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The bar chart in Figure 25 above shows the amount of 

type I errors committed by the t-test out of a total of 

1000 repetitions with a sample size of 10 (i.e., 953 

wrong rejections in 1000 replications). The data were 

produced using a uniform distribution. 

 

 
The bar chart in Figure 26 above shows the amount of type 

I errors committed by the z-test out of a total of 1000 

repetitions with a sample size of 10 (i.e., 926 wrong 

rejections in 1000 replications). The data were produced 

using a uniform distribution. 

 

 

 

 
The bar chart in Figure 27 above shows the amount of 

type I errors committed by the Sign-test out of a total of 

1000 repetitions with a sample size of 10 (i.e., 1000 

wrong rejections in 1000 replications). The data were 

produced using a uniform distribution. 

 

 
The bar chart in Figure 28 above shows the amount of 

type I errors committed by the Wilcoxon Sign Rank test 

out of a total of 1000 repetitions with a sample size of 10 

(i.e., 959 wrong rejections in 1000 replications). The data 

were produced using a uniform distribution. 
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FIGURE 25: Number of Type I Error Committed by T-Test
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FIGURE 26: Number of Type I Error Committed by Z-Test
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FIGURE 27: NUmber of Type I Error Committed by Sign Test
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FIGURE 28: Number of Type I Error Committed by Wilcoxon Sign Rank Test
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The bar chart in Figure 29 above shows the amount of 

type I errors committed by the t-test out of a total of 

1000 repetitions with a sample size of 20 (i.e., 955 

wrong rejections in 1000 replications). The data were 

produced using a uniform distribution. 

 

 
The bar chart in Figure 30 above shows the amount of type 

I errors committed by the z-test out of a total of 1000 

repetitions with a sample size of 20 (i.e., 917 wrong 

rejections in 1000 replications). The data were produced 

using a uniform distribution. 

 

 

 
The bar chart in Figure 31 above shows the amount of 

type I errors committed by the Sign test out of a total of 

1000 repetitions with a sample size of 20 (i.e., 1000 

wrong rejections in 1000 replications). The data were 

produced using a uniform distribution. 

 

 
The bar chart in Figure 32 above shows the amount of type 

I errors committed by the Wilcoxon Sign Rank test out of 

a total of 1000 repetitions with a sample size of 20(i.e., 

959 wrong rejections in 1000 replications). The data were 

produced using a uniform distribution. 
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FIGURE 29: Number of Type I Error Committed by T-Test
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FIGURE 30: Number of Type I Error Committed by Z-Test
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FIGURE 31: Number of Type I Error Committed by Sign Test
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FIGURE 32: Number of Type I Error Committed by Wilcoxon Sign Rank Test
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The bar chart in Figure 33 above shows the amount of 

type I errors committed by the t-test out of a total of 

1000 repetitions with a sample size of 40 (i.e., 940 

wrong rejections in 1000 replications). The data were 

produced using a uniform distribution. 

 

 
The bar chart in Figure 34 above shows the amount of type I 

errors committed by the z-test out of a total of 1000 

repetitions with a sample size of 40 (i.e., 904 wrong 

rejections in 1000 replications). The data were produced 

using a uniform distribution. 

 

 

 

 
The bar chart in Figure 35 above shows the amount of 

type I errors committed by the Sign test out of a total of 

1000 repetitions with a sample size of 40 (i.e., 1000 

wrong rejections in 1000 replications). The data were 

produced using a uniform distribution. 

 

 
The bar chart in Figure 36 above shows the amount of 

type I errors committed by the Wilcoxon Sign Rank test 

out of a total of 1000 repetitions with a sample size of 

40 (i.e., 945 wrong rejections in 1000 replications). The 

data were produced using a uniform distribution. 

 

 

SUMMARY OF FINDINGS 

This study concentrated on t, z, Sign, and 

Wilcoxon sign rank tests when data followed 

another distribution as sample size increased 

asymptotically. The exponential, gamma, and 

uniform distributions (these distributions were 

chosen because they are commonly right skewed 

distributions, and most of the real life data are 

positively skewed if non normal) were used to 

simulate data at three sample sizes (10, 20 and 

40), which correspond to small, moderate, and 

large sample sizes, respectively. The table and the 

graphs demonstrated that for data from gamma 
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FIGURE 34: Number of Type I Error Committed by Z-Test
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FIGURE 35: Number of Type I Error Committed by Sign Test
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FIGURE 36: Number of Type I Error Committed by Wilcoxon Sign Rank Test
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and exponential distributions, the Wilcoxon sign 

rank test works better at all sample sizes at 5% 

level of significance (i.e., it has not rejected a true 

null hypothesis during the analysis), in the 1000 

iterations and the 1000 iterations is set in the R 

code algorithm. In other words, a type I error is 

made if p-value is less than or equal to the alpha 

level, and t, z and sign tests wrongly rejected the 

true null hypothesis while in fact it is true more 

than the Wilcoxon sign rank test. Based on the 

analysis, Wilcoxon sign rank test can be applied 

when a data collected followed exponential and 

gamma distribution at small, moderate and large 

sample sizes. Similarly, the z-test is the most 

reliable test for data from uniform distributions at 

all sample sizes with a lowest type I error 

committed compared to t, sign and Wilcoxon sign 

rank tests. 

CONCLUSION  

The investigation showed that the Wilcoxon sign 

rank test is the best since it has the lowest type I 

error for data from gamma and exponential at all 

sample sizes as shown in the tables as well as the 

bar charts (i.e., its ability of identifying the true 

null hypothesis than the rest of the tests). Which 

shows that t, z and sign tests are not robust to a 

data from exponential and gamma distributions 

for their inability to accept a true hypothesized 

value (i.e., their inability to identify a true null 

hypothesis). And if a statistical test cannot accept 

a true null hypothesis in a particular analysis, 

then by implication it cannot be reliable. 

Therefore, the Wilcoxon sign rank test can be 

useful to researchers that performed experiment 

on one sample data especially those in medicine 

(in testifying their claims o the effectiveness of 

their drugs when produced) or those in 

manufacturing process (e.g., light bulbs, fans, 

etc., to verify the claims of the life span of their 

products) when it follows gamma and exponential 

at small, moderate and large sample sizes. The 

experiment also showed that, for all sample sizes, 

the z-test is the most reliable test for data from 

uniform distribution. Based on the results of the 

experiment and the findings of this study 

particularly the bar charts which shows the clear 

picture of the analysis, it is obvious that a robust 

test for a data from exponential, gamma and 

uniform distributions at small, moderate and large 

sample sizes were obtained. Therefore, it is 

recommended to apply the Wilcoxon sign rank 

test for data from the gamma and exponential 

distributions at small, moderate and large sample 

sizes, whereas the z-test is advised for data from 

the uniform distribution at small, moderate and 

large sample sizes. This research article is limited 

on the robustness of one sample test of location to 

a data from three distributions only, and 5% 

significance level and type I error are used in 

assessing their performance. Finally, a further 

research can be conducted at 1% or 10% and 

using a type II error of a test as a criterion for 

assessment to see the behaviors of the selected 

tests.  
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