
AJBAR Vol. 3(4), August 2024: 52-61, ISSN: 2811-2881

52

 Arid Zone Journal of Basic and Applied Research

Faculty of Science, Borno State University

Maiduguri, Nigeria

Journal homepage: https://www.azjournalbar.com

Research Article

Statebert: Enhancing Bert with State Machine for SQL Injection

Detection
Aminu Tukur

1
, Kabir Umar

2
 and Aliyu Isah Agaie

3

1
Department of Computer Science, Faculty of Computing, Bayero University Kano

2
Department of Software Engineering, Faculty of Computing, Bayero University Kano

3
Department of information and Media Studies, Faculty of Communication, Bayero University Kano

*Corresponding author’s Email: Tukuraminu85@gmail.com, doi.org/10.55639/607.090807

ARTICLE INFO:

Keywords:
SQL injection,

State Machine,

BERT,

Vulnerabilities

ABSTRACT

SQL injection vulnerabilities continue to be a significant threat to web

applications as shown in OWASP 2021 Ranking. It enables attackers to gain

unauthorized access to sensitive data and potentially execute malicious code

on the server. Traditional signature-based detection methods often fail to

identify novel or obfuscated SQL injection attacks. This paper presents a

StateBERT approach that combines the strengths of a state machine and a

BERT model to enhance the detection and mitigation of SQL injection

vulnerabilities. The state machine handles the structural analysis of SQL

queries, while the BERT model provides advanced language understanding to

identify more complex, context-dependent anomalies. The paper discusses

how this enhanced approach can effectively handle various types of SQL

injection vulnerabilities. By leveraging the complementary capabilities of the

state machine and the BERT model. The paper also presents the Proposed

experiment, expected results and future directions. The Preliminary result is

promising.

Corresponding author: Aminu Tukur, Email: Tukuraminu85@gmail.com

Department of Computer Science, Faculty of Computing, Bayero University Kano

INTRODUCTION

Web applications are highly important in various

industries as they handle sensitive information,

enable key operations, and facilitate global

connections. However, despite their

convenience, these applications have hidden

weaknesses that can be exploited by malicious

individuals to steal data, disrupt operations, or

compromise entire systems. In the field of

cybersecurity, computer vulnerability refers to a

flaw in a system that makes it susceptible to

attacks. This vulnerability can also encompass

weaknesses in computers, procedures, or any

other aspect that exposes information security to

 A. Tukur et al.
 ISSN: 2811-2881

53

threats. Some Major computer vulnerabilities

include bugs, easily guessable passwords, pre-

infected software, lack of data encryption, OS

command and SQL injections, buffer overflow,

insufficient authorization measures, utilization

of flawed algorithms, and URL redirects to

untrusted websites (India & Sharma, 2023).

Traditional detection methods for SQL Injection

vulnerabilities, such as "Signature-based" and

"Pattern Matching," primarily rely on

identifying common patterns or keywords used

in these attacks. While this approach can be

effective against known attack techniques, it

may not be adequate for detecting novel attacks

that exploit previously unknown vulnerabilities.

Moreover, attackers constantly develop new

ways to evade detection, making it difficult for

predefined patterns to catch these novel SQLi

attacks (Kapoor, 2023), (Fahmi Al Azhar &

Harwahyu, 2023b).

Recently, machine learning was proposed as an

alternative to traditional detection methods.

Although it excels at detecting common SQL

injection patterns like keyword matching or

suspicious function calls, it struggles with

entirely new attack vectors that deviate

significantly from the training data (Montaruli et

al., 2023a). Deep learning models, on the other

hand, can potentially achieve higher accuracy in

detecting complex SQL injection attempts,

including zero-day attacks (previously unknown

vulnerabilities). However, the deep learning

models are prone to overfitting, where they

perform well on training data but poorly on

unseen data (ALAzzawi, 2023).

Furthermore, a transformer based model based

on "Synbert" shows promise in the detection of

various forms of SQL injection by leveraging

both the syntax and semantic meaning of queries

beyond just keywords. Still, challenges persist in

the detection of unseen queries and in the

detection of piggybackings and illegal/logical

queries. The approach often struggles with the

evolving nature of attacks, particularly those

involving malicious code within seemingly

legitimate queries, where an attacker crafts

queries that appear syntactically correct but still

exploit vulnerabilities (Lu et al., 2023).

Additionally, illegal/logical queries exploit

vulnerabilities in the database schema itself,

making it difficult for SynBERT to distinguish

between a benign and a malicious query if the

structure is similar.

Therefore, there is a need for an improved SQL

injection detection approach that can effectively

identify both known and unknown attack

patterns, adapt to evolving attack tactics, and

differentiate between legitimate and malicious

queries even when the structure is similar. As a

result, this study focuses on creating a SQL

injection detection system that enhance bert with

state machine for sql injection detection. This

enhancement has the advantage of tackling the

issue of previously unseen vulnerabilities and

evolving attacks, which has not been extensively

researched. The paper discusses how this

enhanced approach can effectively handle

various types of SQL injection vulnerabilities.

By leveraging the complementary capabilities of

the state machine and the BERT model, the

system can offer an improved accuracy,

enhanced contextual understanding, targeted and

efficient analysis, robust and adaptable

detection, and increased explainability and

interpretability – all of which contribute to a

more effective and reliable SQL injection

vulnerability detection mechanism. The paper

also present, Proposed experiment, expected

results and future directions. Preliminary result.

The work is ongoing; therefore, the paper

Present the proposed experiment and the

expected result. The Preliminary result is

encouraging

The remaining of this Paper is organized as

follows; section II Related Work, section III

proposed method, Section IV Illustrated

Example, Section IV Proposed experimental,

 A. Tukur et al.
 ISSN: 2811-2881

54

Section VI Expected Result and Section VII is

conclusion.

Related work

In this section, we discussed the following, SQL

injection overview, SQL injection detection and

prevention methods, Challenges in SQL

injection detection.

An SQL injection (also known as SQLi) is a

technique for the “injection” of SQL commands

by attackers to access and manipulate databases.

Using SQL code via user input that a web

application (eg, web form) sends to its database

server, attackers can gain access to information,

which could include sensitive data or personal

customer information (Añasco Loor et al.,

2023). SQL injection is a common issue with

database-driven websites. Given the prevalence

of such websites, this flaw is easily detected and

easily exploited, and any website can be subject

to an SQL injection attack (Okello et al., 2023).

Many vulnerabilities detection tools have been

proposed that combine more maturely

technologically advanced detection methods.

From the perspective of technology-driven

development, SQLi vulnerability detection can

be divided into traditional methods and Machine

learning, where traditional methods are driven

by expert experience in development. In

contrast, Machine learning methods are driven

by data, although in recent time there is a

significant interest in Vulnerability detection

using Large Language Model.

An Approach that works to explores the

shortcomings of the conventional methodologies

based on enumerating test case libraries and

suggest a Finite State Machine (SPT-FSM)-

based SQLIV Penetration Test approach. The

suggested method creates an FSM based on the

states that correspond to various SQLIV

penetration test cases, maps test case statuses

and pertinent responses, and examines the

established FSM's transition regularity for

testing SQLIV that has a dynamic nature and

states with distinct transition characteristics. The

experimental findings demonstrate that by

lowering False Positives (FP) and False

Negatives (FN), the suggested strategy can

successfully increase the accuracy of SQLIV

penetration tests (Lei et al., 2016). The

disadvantage is that traditional approaches rely

on test case library enumerating methods, which

may not be able to effectively capture the

dynamic nature and state transition

characteristics of SQLIV vulnerabilities.

Random forest and Support Vector Machine has

shown an improvement in the detection of sqli

when used with Feature extraction to identify

important and new features of the data. It yields

improved result and speed up in the training

process as well. Originally, the dataset provided

a feature and a class attribute which are

“length”, and “attack_type”. The Random Forest

as shown has a significant benefit in that it can

be used for both classification and regression

issues (Dass, 2022). However, if the training

data is incomplete, contains errors, or lacks

representative samples of SQL injection attacks,

the model may not perform well in detecting

such attacks. Also several hyperparameters need

to be tuned for optimal performance. Choosing

the right values for these parameters can be

challenging and might require substantial

computational resources and time. If not

appropriately tuned, models can exhibit

decreased performance.

A hybrid framework for detecting structured

query language injection attacks in web-based

applications that combines a SQL query

matching technique (SQLMT) and a standard

blockchain framework to detect SQLi attacks

created by insiders. In contrast to alternative

methods, this suggested framework is relatively

easy to put into practice. However, it does

require some extra computational time because

it relies on confirmations from peers working on

the blockchain system. Nevertheless, the

increased computational cost is justified as the

process of checking query integrity provides a

 A. Tukur et al.
 ISSN: 2811-2881

55

more efficient solution for detecting SQL

injection attacks (Furhad et al., 2022). The

limitation is that the approach utilizes a SQL

query matching technique (SQLMT) to detect

malicious SQL queries. This will assumes that

the system has a pre-defined set of "normal"

SQL query patterns, which may not always be

comprehensive or up-to-date.

In another study, Natural Language Processing

(NLP) was utilized to improve the accuracy of

text processing for detection. Four algorithms

were implemented including Logistic

Regression, Naive Bayes, Random Forest, and

Convolutional Neural Network (CNN). The

model was trained using data from the first

dataset and evaluated using validation records

from the second dataset. The primary dataset

was transformed into a corpus to facilitate the

model's understanding of the input. The CNN

algorithm demonstrated the highest accuracy,

and faster response time. Compared to

traditional machine learning method (Natarajan

et al., 2023). Although deep learning has

outperformed the machine learning models, deep

learning model is prone to overfitting.

Furthermore, a model that uses supervised

machine learning techniques, input string

validation technique, and pattern matching to

identify anomalies-injections has shown a

significant improvement over other machine

learning model like KNN and RF (Irungu et al.,

2023). The proposed model was not tested

against other common SQL injection attack

types, such as union-based, blind, and error-

based attacks. Evaluating the model's

performance on a wider range of SQL injection

techniques would provide a more comprehensive

assessment of its capabilities; it was tested on

the tautology attack.

Additionally, the issue of explicability and

interpretability of black-box models was

introduced and provide insights into the model's

decision-making process using a case-based

explanation method for classifying SQL

sentences as an attack or not(Recio-Garcia et al.,

2023). Also, another Approach emphasizes on

the importance of protecting user data and

privacy in the age of technology and the need to

increase website security to prevent cyber-

attacks. The major findings of their study

conclude that the naive Bayes approach showed

significant accuracy in identifying SQL injection

threats with 0.99 accuracies. Naive Bayes

Performs better than Neural-Network, SVM,

Random-Forest, KNN, and Logistic Regression

(ALMaliki & Jasim, 2023). The method does not

mention any external validation or testing of the

models on a separate dataset or in a different

context.

A model called "SQIRL" is used for Grey-Box

Detection Using Reinforcement Learning. Their

model generates a more diverse range of

potential risks compared to existing scanners,

resulting in the discovery of more vulnerability.

Additionally, SQIRL employs a targeted

approach, leading to fewer payloads being

attempted. In testing against a microbenchmark

for SQL injection, SQIRL successfully identifies

all vulnerabilities with significantly fewer

requests than most state-of-the-art scanners.

Furthermore, in a separate evaluation involving

14 real-world web applications, SQIRL

outperforms other scanners by uncovering 33

vulnerabilities without any false positives. The

researchers who developed SQIRL responsibly

disclosed 22 newly discovered vulnerabilities,

which have been categorized into 6 CVEs

(Wahaibi et al., 2023). The approach is limited

by their inefficient payload generation

techniques, which rely on simple rule-based

approaches that cover only common payloads

and fail to adapt to the specific characteristics of

target web applications, leading to a high

volume of ineffective requests. Logistic

Regression-based model on the hand

demonstrates that detecting SQL injection

attacks on flow data from lightweight protocols

is possible, with a false alarm rate of less than

 A. Tukur et al.
 ISSN: 2811-2881

56

0.07% with a (Crespo-Martínez et al., 2023).

The technique relies solely on network flow data

(e.g., NetFlow, sFlow) and does not utilize the

full packet-level information that may be

available in some network environments

Contextualized word embeddings increase the

precision rate of machine learning-based SQL

injection attack detection to over 99% over a

variety of classification algorithms.

Additionally, the model's training period is

shortened by a noteworthy factor of 31.

Furthermore, contextualized embeddings allow

better model calibration, as shown by reliability

diagrams (Zulu et al., 2024). While the

technique demonstrates superior performance of

contextualized embeddings in a research setting,

the practical deployment and real-world

applicability of the approach are not discussed.

Factors such as computational overhead,

integration with existing systems, and

monitoring for evolving attack patterns may

need further Analysis. Another approach that

creates multiple perspectives of SQL data by

encoding SQL statements into SQL tags. The

method involves using bidirectional long short-

term memory (LSTM) and convolutional neural

network (CNN) layers to learn a shared latent

space from these different views. In the

detection stage, the method makes individual

predictions for each representation and

determines if a query is an SQLi attack by

considering the output of a consensus function.

Furthermore, the method uses an approach

called Interpretable Model-Agnostic

Annotations (LIME) to interpret the results of

the model and analyze the SQL injection inputs.

This is part of the Explainable Artificial

Intelligence (XAI) field. The results show that

the MVC-BiCNN method performed better than

baseline methods, achieving a detection rate of

99.96% (Kakisim, 2024). The use of a multi-

view approach with bidirectional LSTM and

CNN layers may increase the computational

complexity of the model, which could impact

the real-time processing and deployment of the

system.

Despite the continuous efforts of researchers, the

problem of SQL injection (SQLi) continues to

pose a significant threat in the digital landscape.

It remains a threat within web applications,

constantly evolving its attack techniques to

exploit vulnerabilities. Although there are

various detection techniques available, the fight

against SQLi is far from being won. This

ongoing battle is accompanied by several

challenges, including the presence of false

positives and negatives in detection, the

complexity of web application logic, concerns

regarding data security, and the limitations of

available resources.

Therefore, this research introduces a new

approach called StateBERT, The system would

enhance the detection of SQL injection,

leveraging the complementary strengths of the

state machine and BERT components. The

operation of the model is showed in section III.

METHODOLOGY

This chapter presents the general research

methodology that will be used in conducting this

study, shown as a sequence of activities which

will be carried out in phases and steps.

This research proposed a model for the detection

of SQL injection vulnerability by integrating

State Machine and BERT. The model is

Enhanced State machine and Bert model called

StateBert. The Left side of the diagram is the

state machine while the right side is the BERT

part of the model It utilize both features of State

machine and BERT as shown in Figure 1.

A state machine will provide a structured

representation of the expected behavior and

valid transitions in an application's input

processing flow. The State Machine accepts an

SQL injection query as input, a state will

analyze the query, which will define the

legitimate sequence of states that an

application's inputs should follow. It also

identifies anomalous or malicious input patterns

that deviate from the expected flow. The state

 A. Tukur et al.
 ISSN: 2811-2881

57

machine will capture the valid structure and

syntax of SQL queries, allowing the model to

detect deviations or injections that violate the

expected patterns.

The state machine transitions between states

based on the character being processed in the

input string, e.g Valid Character. The machine

transitions to the 'Error' state (invalid) if an

unexpected character or sequence is

encountered, indicating a potential SQL

injection attempt. The state machine accepts the

input as valid if it reaches a designated end state

(e.g., a state representing a complete SQL

statement) without transitioning to the Error

state. The state machine rejects the input as

potentially containing SQL injection if it

transitions to the 'Error' state at any point during

processing. Finally, the acceptance state will be

the output; it will consist of both malicious and

benign queries.

Furthermore, The BERT model will convert the

state machine output into a sequence of token

IDs, which represent the individual tokens

(words, symbols, etc.) present in the output. This

can be achieved by mapping each unique state

and metadata element (e.g., SELECT, FROM,

WHERE, CONDITION) to a unique token ID,

creating a vocabulary of the state machine

output elements.

The sequence of states and metadata elements

from the state machine output is then converted

to a sequence of token IDs, which can be used as

the input to the BERT model.

The encoded state machine output, represented

as a sequence of token IDs, is then passed as

input to the BERT-based detection mechanism.

The BERT model takes the input sequence and

processes it through its multi-layer transformer

architecture, generating a contextual

representation of the input.The final layer of the

BERT model produces a classification output,

which indicates whether the input SQL query is

classified as "normal" or "malicious." The

BERT model's classification is based on its

learned patterns and characteristics from the pre-

training dataset, which includes both benign and

malicious SQL queries. If the BERT model

classifies the input as "malicious," it suggests

that the state machine output contains anomalies

or suspicious patterns that are indicative of a

potential SQL injection attack.

Figure 1: Model of the Proposed StateBERT

 A. Tukur et al.
 ISSN: 2811-2881

58

By integrating the state machine output as the

input to the BERT-based detection mechanism,

the SQL injection detection system can leverage

the complementary strengths of both approaches

to enhance the accuracy and reliability of SQL

injection detection. The state machine's

structural analysis provides valuable information

to the BERT model, which can then apply its

advanced language understanding capabilities to

make a more informed decision about the nature

of the SQL query.

Finally, evaluation and validation of the

performance of the integrated approach using

appropriate metrics and testing methodologies.

The experiment to be carried out is shown is in

section IV, V and VI bellow.

Illustrated Example

In this section, a real example is used to

demonstrate what is expected from the system.

Example 1: Normal SQL Query

SELECT * FROM users

WHERE id = 1

The state machine would process the SQL query

and identify the following key components:

[{'state': 'SELECT', 'start': 0, 'end': 6}, {'state':

'FROM', 'start': 7, 'end': 11}, {'state': 'WHERE',

'start': 12, 'end': 19}, {'state': 'CONDITION',

'start': 20, 'end': 25}]

'start': This represents the starting position of

the identified component or clause within the

original SQL query string. In the example,

the 'start' is 0, which means the SELECT clause

starts at the 0th (first) character position of the

SQL query.

'end': This represents the ending position of the

identified component or clause within the

original SQL query string. In the example,

the 'end' is 6, which means the SELECT clause

ends at the 6th character position of the SQL

query.

The state machine would recognize

the SELECT, FROM, WHERE,

and CONDITION clauses, and capture their

respective positions within the query. The

structured output from the state machine would

be encoded as a sequence of token IDs and fed

into the BERT model. The BERT model would

analyze the input and look for any patterns or

anomalies that might indicate a SQL injection

vulnerability. In this case, the BERT model

would classify the SQL query as "normal," as it

does not contain any suspicious or malicious

elements.

The state machine's structural analysis did not

identify any anomalies, and the BERT model's

classification of the query as "normal" indicates

that the SQL query is safe and does not contain

any SQL injection vulnerabilities. The combined

detection mechanism would provide a high-

confidence assessment that the SQL query is

safe and can be executed without any security

concerns.

Example 2: Malicious SQL Query

SELECT * FROM users WHERE id = 1

OR '1'='1'

The state machine would process the SQL query

and identify the following key components:

[{'state': 'SELECT', 'start': 0, 'end': 6}, {'state':

'FROM', 'start': 7, 'end': 11}, {'state': 'WHERE',

'start': 12, 'end': 19}, {'state': 'CONDITION',

'start': 20, 'end': 32}]

The state machine would recognize

the SELECT, FROM, WHERE, and the

malicious CONDITION clause, which includes

the suspicious OR '1'='1' condition. The

structured output from the state machine would

be encoded as a sequence of token IDs and fed

into the BERT model. The BERT model would

analyze the input and look for any patterns or

anomalies that might indicate a SQL injection

vulnerability. In this case, the BERT model

would classify the SQL query as "malicious," as

it contains a suspicious condition that is

characteristic of a SQL injection attack.

The state machine's structural analysis identified

the malicious CONDITION clause, and the

BERT model's classification of the query as

"malicious" confirms that the SQL query

 A. Tukur et al.
 ISSN: 2811-2881

59

contains SQL injection vulnerability. The

combined detection mechanism would provide a

high-confidence assessment that the SQL query

is malicious and should not be executed, as it

poses a significant security risk.

In the first example, both the state machine and

the BERT model recognized the SQL query as

normal, indicating that it is safe and does not

contain any SQL injection vulnerabilities. In the

second example, the state machine identified the

malicious CONDITION clause, and the BERT

model confirmed that the query is malicious,

effectively detecting the SQL injection

vulnerability.

Proposed Experiment

In this section, the set of experiment to be

carried out is described. It contains 3 different

components; Performance metrics, Data sets,

and Expected result

PERFORMANCE METRICS FOR SQL

INJECTION EVALUATION

Protecting against SQL injection (SQLi) is

crucial in today's digital landscape. Although

most studies use similar evaluation metrics;

Accuracy, Precision, Recall and F1-score. Here's

a set of evaluation metrics to assess the SQLi

detection and prevention strategies. Most studies

use similar evaluation metrics:

•

 equ 1

• Precision =

 equ 2

•

 equ 3

•

 equ 4

Where;

• True Positive (TP): Measures the percentage of actual SQLi attacks correctly identified. Higher

TPR indicates better detection accuracy.

• False Positive (FP): Measures the percentage of legitimate requests flagged as malicious. Lower

FPR minimizes disruptions to legitimate users.

• True Negative (TN): Measures the percentage of legitimate requests correctly identified as safe.

Higher TN signifies strong baseline protection.

• False Negative (FN): Measures the percentage of missed SQLi attacks. Lower FN indicates

robust detection capabilities.

DATASET

The dataset that will contain benign SQL query

and malicious Query from “Kaggle” SQl This

dataset is composed of 30,920 samples of SQL

queries . Thus, it contains 11,331 Malicious and

19,589 benign queries. For testing it will be

selected randomly from the original dataset,

where 2,000 are benign queries, while the other

2,000 are SQLi queries.

 Table 5.1: Kaggle SQL Dataset

S/No Dataset Malicious Normal Total

1. Kaggle 11331 19589 30920

 A. Tukur et al.
 ISSN: 2811-2881

60

EXPERIMENTAL PLANNING
In this study, After Successful implementation

of StateBERT model, N-Fold Validation will be

carried out, We will use the KFold class from

the sklearn.model_selection module to perform

the k-fold cross-validation. The

cross_validate_sql_injection_detector function

takes the input data (X) and labels (y) as

arguments, and the number of folds (k) to use.

The function will splits the data into k folds,

trains the SQL injection detection model on k-1

folds, and evaluates it on the remaining fold.

This process is repeated k times, and the mean

performance metrics (accuracy, precision, recall,

F1-score) are calculated and returned.

By using cross-validation, we can better estimate

the model's performance and its ability to

generalize to unseen SQL injection patterns.

This information can help make more informed

decisions about the model's deployment, identify

areas for improvement, and track the model's

performance over time as the SQL injection

landscape evolves.

CONCLUSION AND FUTURE WORK

The research presented in this paper introduces a

StateBERT approach that combines the strengths

of a state machine and a BERT model to

enhance the detection and mitigation of SQL

injection vulnerabilities. This system represents

a promising alternative and potential

improvement over existing techniques and its

limitations in their ability to comprehensively

handle the diverse range of SQL injection attack

vectors. The proposed approach aims to

overcome these limitations by leveraging the

complementary capabilities of the state machine

and the BERT model. The state machine's

structural analysis of SQL queries allows for the

effective identification of syntax-based SQL

injection attempts, while the BERT model's

advanced language understanding enables the

detection of more complex, context-dependent

anomalies, such as tautology-based, union-

based, and inference-based SQL injection

vulnerabilities. This combination of techniques

provides a more holistic and robust defense

against SQL injection threats. As the research

progresses, the continued evaluation and

refinement of the approach, including its

performance, scalability, and real-world

applicability, is crucial and will be Presented.

Ongoing collaboration with security

practitioners and the integration of the hybrid

system into existing security frameworks may

also yield insights and drive further

enhancements.

REFERENCES

ALMaliki, M., & Jasim, M. (2023). Comparison

study for NLP using machine learning

techniques to detecting SQL injection

vulnerabilities. International Journal of
Nonlinear Analysis and Applications,

14(8).

https://doi.org/10.22075/ijnaa.2022.28365.

4098

Añasco Loor, C., Morocho, K., & Hallo, M.

(2023). Using Data Mining Techniques

for the Detection of SQL Injection Attacks

on Database Systems. Revista Politécnica,

51(2), 19–28.

https://doi.org/10.33333/rp.vol51n2.02

Arasteh, B., Aghaei, B., Farzad, B., Arasteh, K.,

Kiani, F., & Torkamanian-Afshar, M.

(2024). Detecting SQL injection attacks
by binary gray wolf optimizer and

machine learning algorithms. Neural

Computing and Applications, 36(12), 6771–6792.

https://doi.org/10.1007/s00521-024-

09429-z

Crespo-Martínez, I. S., Campazas-Vega, A.,

Guerrero-Higueras, Á. M., Riego-

DelCastillo, V., Álvarez-Aparicio, C., &

Fernández-Llamas, C. (2023). SQL

injection attack detection in network flow

data. Computers & Security, 127, 103093.

https://doi.org/10.1016/j.cose.202103093

Dass, F. D. M. (2022). A Comparative Study of

SQL Injection Detection Using Machine

Learning Approach. 3(2).

Falor, A., Hirani, M., Vedant, H., Mehta, P., &

Krishnan, D. (2022). A Deep Learning

Approach for Detection of SQL Injection

Attacks Using Convolutional Neural

Networks. In D. Gupta, Z. Polkowski, A.
Khanna, S. Bhattacharyya, & O. Castillo

(Eds.), Proceedings of Data Analytics and

Management (Vol. 91, pp. 293–304).

 A. Tukur et al.
 ISSN: 2811-2881

61

Springer Singapore.

https://doi.org/10.1007/978-981-16-6285-

0_24

Furhad, Md. H., Chakrabortty, R. K., Ryan, M. J.,

Uddin, J., & Sarker, I. H. (2022). A hybrid

framework for detecting structured query

language injection attacks in web-based

applications. International Journal of

Electrical and Computer Engineering

(IJECE), 12(5), 5405.

https://doi.org/10.11591/ijece.v12i5.pp540

5-5414

Harip, S. H. N., Hamid, I. R. A., Murli, N., &

Hassan, N. (2022). Classification of SQL

injection attack using K-Means clustering

algorithm. 040004.

https://doi.org/10.1063/5.0104348

Irungu, J., Graham, S., Girma, A., & Kacem, T.

(2023). Artificial Intelligence Techniques

for SQL Injection Attack Detection.

Proceedings of the 2023 8th International

Conference on Intelligent Information

Technology, 38–45.

https://doi.org/10.1145/3591569.3591576

Kakisim, A. G. (2024). A deep learning approach

based on multi-view consensus for SQL

injection detection. International Journal

of Information Security, 23(2), 1541–

1556. https://doi.org/10.1007/s10207-023-

00791-y

Kapoor, A. (2023). SQL-Injection Threat Analysis

and Evaluation. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.4430812

Lei, L., Xu, Jing, Guo, Ghenkai, Kang, Jiehui, Xu,

Sihan, & Zhang, Biao. (2016). Exposing

SQL Injection Vulnerability through

Penetration Test based on Finite State

Machine. 2nd IEEE International
Conference on Computer and

Communications (ICCC), 1171–1175.

https://doi.org/10.1109/CompComm.2016.

7924889

Lu, D., Fei, J., & Liu, L. (2023). A Semantic

Learning-Based SQL Injection Attack
Detection Technology.

Natarajan, Y., Karthikeyan, B., Wadhwa, G.,

Srinivasan, S. A., & Akilesh, A. S. P.

(2023). A Deep Learning Based Natural

Language Processing Approach for

Detecting SQL Injection Attack. In A.

Abraham, S. Pllana, G. Casalino, K. Ma,

& A. Bajaj (Eds.), Intelligent Systems
Design and Applications (pp. 396–406).

Springer Nature Switzerland.

https://doi.org/10.1007/978-3-031-35507-

3_38

Recio-Garcia, J. A., Orozco-del-Castillo, M. G., &

Soladrero, J. A. (2023). Case-based

Explanation of Classification Models for

the Detection of SQL Injection Attacks.

Singh, K. D., & Singh, P. D. (2023). Machine

Learning in Robotics with Fog/Cloud

Computing and IoT. EAI Endorsed

Transactions on AI and Robotics, 2.

https://doi.org/10.4108/airo.3621

Sun, H., Du, Y., & Li, Q. (2023). Deep Learning-

Based Detection Technology for SQL

Injection Research and Implementation.

Applied Sciences, 13(16), 9466.

https://doi.org/10.3390/app13169466

Tadhani, J. R., Vekariya, V., Sorathiya, V.,

Alshathri, S., & El-Shafai, W. (2024).

Securing web applications against XSS

and SQLi attacks using a novel deep

learning approach. Scientific Reports,

14(1), 1803.

https://doi.org/10.1038/s41598-023-

48845-4

Venkatramulu, S., Waseem, S., Taneem, A.,

Thoutam, S. Y., & Apuri, S. (2024).

Research on SQL Injection Attacks using
Word Embedding Techniques and

Machine Learning.

Zulu, J., Han, B., Alsmadi, I., & Liang, G. (2024).

Enhancing Machine Learning Based SQL

Injection Detection Using Contextualized

Word Embedding. Proceedings of the

2024 ACM Southeast Conference on ZZZ,

211–216.

https://doi.org/10.1145/3603287.3651187

