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ABSTRACT 
  

SQL injection vulnerabilities continue to be a significant threat to web 

applications as shown in OWASP 2021 Ranking. It enables attackers to gain 

unauthorized access to sensitive data and potentially execute malicious code 

on the server. Traditional signature-based detection methods often fail to 

identify novel or obfuscated SQL injection attacks. This paper presents a 

StateBERT approach that combines the strengths of a state machine and a 

BERT model to enhance the detection and mitigation of SQL injection 

vulnerabilities. The state machine handles the structural analysis of SQL 

queries, while the BERT model provides advanced language understanding to 

identify more complex, context-dependent anomalies. The paper discusses 

how this enhanced approach can effectively handle various types of SQL 

injection vulnerabilities. By leveraging the complementary capabilities of the 

state machine and the BERT model. The paper also presents the Proposed 

experiment, expected results and future directions. The Preliminary result is 

promising. 
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INTRODUCTION  

Web applications are highly important in various 

industries as they handle sensitive information, 

enable key operations, and facilitate global 

connections. However, despite their 

convenience, these applications have hidden 

weaknesses that can be exploited by malicious 

individuals to steal data, disrupt operations, or 

compromise entire systems. In the field of 

cybersecurity, computer vulnerability refers to a 

flaw in a system that makes it susceptible to 

attacks. This vulnerability can also encompass 

weaknesses in computers, procedures, or any 

other aspect that exposes information security to 
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threats. Some Major computer vulnerabilities 

include bugs, easily guessable passwords, pre-

infected software, lack of data encryption, OS 

command and SQL injections, buffer overflow, 

insufficient authorization measures, utilization 

of flawed algorithms, and URL redirects to 

untrusted websites (India & Sharma, 2023).  

Traditional detection methods for SQL Injection 

vulnerabilities, such as "Signature-based" and 

"Pattern Matching," primarily rely on 

identifying common patterns or keywords used 

in these attacks. While this approach can be 

effective against known attack techniques, it 

may not be adequate for detecting novel attacks 

that exploit previously unknown vulnerabilities. 

Moreover, attackers constantly develop new 

ways to evade detection, making it difficult for 

predefined patterns to catch these novel SQLi 

attacks (Kapoor, 2023), (Fahmi Al Azhar & 

Harwahyu, 2023b). 

Recently, machine learning was proposed as an 

alternative to traditional detection methods. 

Although it excels at detecting common SQL 

injection patterns like keyword matching or 

suspicious function calls, it struggles with 

entirely new attack vectors that deviate 

significantly from the training data (Montaruli et 

al., 2023a). Deep learning models, on the other 

hand, can potentially achieve higher accuracy in 

detecting complex SQL injection attempts, 

including zero-day attacks (previously unknown 

vulnerabilities). However, the deep learning 

models are prone to overfitting, where they 

perform well on training data but poorly on 

unseen data (ALAzzawi, 2023). 

Furthermore, a transformer based model based 

on "Synbert" shows promise in the detection of 

various forms of SQL injection by leveraging 

both the syntax and semantic meaning of queries 

beyond just keywords. Still, challenges persist in 

the detection of unseen queries and in the 

detection of piggybackings and illegal/logical 

queries. The approach often struggles with the 

evolving nature of attacks, particularly those 

involving malicious code within seemingly 

legitimate queries, where an attacker crafts 

queries that appear syntactically correct but still 

exploit vulnerabilities (Lu et al., 2023). 

Additionally, illegal/logical queries exploit 

vulnerabilities in the database schema itself, 

making it difficult for SynBERT to distinguish 

between a benign and a malicious query if the 

structure is similar. 

Therefore, there is a need for an improved SQL 

injection detection approach that can effectively 

identify both known and unknown attack 

patterns, adapt to evolving attack tactics, and 

differentiate between legitimate and malicious 

queries even when the structure is similar. As a 

result, this study focuses on creating a SQL 

injection detection system that enhance bert with 

state machine for sql injection detection. This 

enhancement has the advantage of tackling the 

issue of previously unseen vulnerabilities and 

evolving attacks, which has not been extensively 

researched. The paper discusses how this 

enhanced approach can effectively handle 

various types of SQL injection vulnerabilities. 

By leveraging the complementary capabilities of 

the state machine and the BERT model, the 

system can offer an improved accuracy, 

enhanced contextual understanding, targeted and 

efficient analysis, robust and adaptable 

detection, and increased explainability and 

interpretability – all of which contribute to a 

more effective and reliable SQL injection 

vulnerability detection mechanism. The paper 

also present, Proposed experiment, expected 

results and future directions. Preliminary result. 

The work is ongoing; therefore, the paper 

Present the proposed experiment and the 

expected result. The Preliminary result is 

encouraging   

The remaining of this Paper is organized as 

follows; section II Related Work, section III 

proposed method, Section IV Illustrated 

Example, Section IV Proposed experimental, 
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Section VI Expected Result and Section VII is 

conclusion. 

Related work 

In this section, we discussed the following, SQL 

injection overview, SQL injection detection and 

prevention methods, Challenges in SQL 

injection detection.  

An SQL injection (also known as SQLi) is a 

technique for the “injection” of SQL commands 

by attackers to access and manipulate databases. 

Using SQL code via user input that a web 

application (eg, web form) sends to its database 

server, attackers can gain access to information, 

which could include sensitive data or personal 

customer information (Añasco Loor et al., 

2023). SQL injection is a common issue with 

database-driven websites. Given the prevalence 

of such websites, this flaw is easily detected and 

easily exploited, and any website can be subject 

to an SQL injection attack (Okello et al., 2023). 

Many vulnerabilities detection tools have been 

proposed that combine more maturely 

technologically advanced detection methods. 

From the perspective of technology-driven 

development, SQLi vulnerability detection can 

be divided into traditional methods and Machine 

learning, where traditional methods are driven 

by expert experience in development. In 

contrast, Machine learning methods are driven 

by data, although in recent time there is a 

significant interest in Vulnerability detection 

using Large Language Model.  

An Approach that works to explores the 

shortcomings of the conventional methodologies 

based on enumerating test case libraries and 

suggest a Finite State Machine (SPT-FSM)-

based SQLIV Penetration Test approach. The 

suggested method creates an FSM based on the 

states that correspond to various SQLIV 

penetration test cases, maps test case statuses 

and pertinent responses, and examines the 

established FSM's transition regularity for 

testing SQLIV that has a dynamic nature and 

states with distinct transition characteristics. The 

experimental findings demonstrate that by 

lowering False Positives (FP) and False 

Negatives (FN), the suggested strategy can 

successfully increase the accuracy of SQLIV 

penetration tests (Lei et al., 2016). The 

disadvantage is that traditional approaches rely 

on test case library enumerating methods, which 

may not be able to effectively capture the 

dynamic nature and state transition 

characteristics of SQLIV vulnerabilities. 

Random forest and Support Vector Machine has 

shown an improvement in the detection of sqli 

when used with Feature extraction to identify 

important and new features of the data. It yields 

improved result and speed up in the training 

process as well. Originally, the dataset provided 

a feature and a class attribute which are 

“length”, and “attack_type”. The Random Forest 

as shown has a significant benefit in that it can 

be used for both classification and regression 

issues (Dass, 2022). However,  if the training 

data is incomplete, contains errors, or lacks 

representative samples of SQL injection attacks, 

the model may not perform well in detecting 

such attacks. Also several hyperparameters need 

to be tuned for optimal performance. Choosing 

the right values for these parameters can be 

challenging and might require substantial 

computational resources and time. If not 

appropriately tuned, models can exhibit 

decreased performance. 

A hybrid framework for detecting structured 

query language injection attacks in web-based 

applications that combines a SQL query 

matching technique (SQLMT) and a standard 

blockchain framework to detect SQLi attacks 

created by insiders. In contrast to alternative 

methods, this suggested framework is relatively 

easy to put into practice. However, it does 

require some extra computational time because 

it relies on confirmations from peers working on 

the blockchain system. Nevertheless, the 

increased computational cost is justified as the 

process of checking query integrity provides a 
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more efficient solution for detecting SQL 

injection attacks (Furhad et al., 2022). The 

limitation is that the approach utilizes a SQL 

query matching technique (SQLMT) to detect 

malicious SQL queries. This will assumes that 

the system has a pre-defined set of "normal" 

SQL query patterns, which may not always be 

comprehensive or up-to-date. 

In another study, Natural Language Processing 

(NLP) was utilized to improve the accuracy of 

text processing for detection.  Four algorithms 

were implemented including Logistic 

Regression, Naive Bayes, Random Forest, and 

Convolutional Neural Network (CNN). The 

model was trained using data from the first 

dataset and evaluated using validation records 

from the second dataset. The primary dataset 

was transformed into a corpus to facilitate the 

model's understanding of the input. The CNN 

algorithm demonstrated the highest accuracy, 

and faster response time. Compared to 

traditional machine learning method (Natarajan 

et al., 2023). Although deep learning has 

outperformed the machine learning models, deep 

learning model is prone to overfitting.  

Furthermore, a model that uses supervised 

machine learning techniques, input string 

validation technique, and pattern matching to 

identify anomalies-injections has shown a 

significant improvement over other machine 

learning model  like KNN and RF (Irungu et al., 

2023). The proposed model was not tested 

against other common SQL injection attack 

types, such as union-based, blind, and error-

based attacks. Evaluating the model's 

performance on a wider range of SQL injection 

techniques would provide a more comprehensive 

assessment of its capabilities; it was tested on 

the tautology attack. 

Additionally, the issue of explicability and 

interpretability of black-box models was 

introduced and provide insights into the model's 

decision-making process using a case-based 

explanation method for classifying SQL 

sentences as an attack or not(Recio-Garcia et al., 

2023). Also, another Approach emphasizes on 

the importance of protecting user data and 

privacy in the age of technology and the need to 

increase website security to prevent cyber-

attacks. The major findings of their study 

conclude that the naive Bayes approach showed 

significant accuracy in identifying SQL injection 

threats with 0.99 accuracies. Naive Bayes 

Performs better than Neural-Network, SVM, 

Random-Forest, KNN, and Logistic Regression 

(ALMaliki & Jasim, 2023). The method does not 

mention any external validation or testing of the 

models on a separate dataset or in a different 

context. 

A model called "SQIRL" is used for Grey-Box 

Detection Using Reinforcement Learning. Their 

model generates a more diverse range of 

potential risks compared to existing scanners, 

resulting in the discovery of more vulnerability. 

Additionally, SQIRL employs a targeted 

approach, leading to fewer payloads being 

attempted. In testing against a microbenchmark 

for SQL injection, SQIRL successfully identifies 

all vulnerabilities with significantly fewer 

requests than most state-of-the-art scanners. 

Furthermore, in a separate evaluation involving 

14 real-world web applications, SQIRL 

outperforms other scanners by uncovering 33 

vulnerabilities without any false positives. The 

researchers who developed SQIRL responsibly 

disclosed 22 newly discovered vulnerabilities, 

which have been categorized into 6 CVEs 

(Wahaibi et al., 2023). The approach is limited 

by their inefficient payload generation 

techniques, which rely on simple rule-based 

approaches that cover only common payloads 

and fail to adapt to the specific characteristics of 

target web applications, leading to a high 

volume of ineffective requests. Logistic 

Regression-based model  on the hand 

demonstrates that detecting SQL injection 

attacks on flow data from lightweight protocols 

is possible, with a false alarm rate of less than 
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0.07% with a (Crespo-Martínez et al., 2023). 

The technique relies solely on network flow data 

(e.g., NetFlow, sFlow) and does not utilize the 

full packet-level information that may be 

available in some network environments 

Contextualized word embeddings increase the 

precision rate of machine learning-based SQL 

injection attack detection to over 99% over a 

variety of classification algorithms. 

Additionally, the model's training period is 

shortened by a noteworthy factor of 31. 

Furthermore, contextualized embeddings allow 

better model calibration, as shown by reliability 

diagrams (Zulu et al., 2024). While the 

technique demonstrates superior performance of 

contextualized embeddings in a research setting, 

the practical deployment and real-world 

applicability of the approach are not discussed. 

Factors such as computational overhead, 

integration with existing systems, and 

monitoring for evolving attack patterns may 

need further Analysis. Another approach that 

creates multiple perspectives of SQL data by 

encoding SQL statements into SQL tags. The 

method involves using bidirectional long short-

term memory (LSTM) and convolutional neural 

network (CNN) layers to learn a shared latent 

space from these different views. In the 

detection stage, the method makes individual 

predictions for each representation and 

determines if a query is an SQLi attack by 

considering the output of a consensus function. 

Furthermore, the method uses an approach 

called Interpretable Model-Agnostic 

Annotations (LIME) to interpret the results of 

the model and analyze the SQL injection inputs. 

This is part of the Explainable Artificial 

Intelligence (XAI) field. The results show that 

the MVC-BiCNN method performed better than 

baseline methods, achieving a detection rate of 

99.96% (Kakisim, 2024). The use of a multi-

view approach with bidirectional LSTM and 

CNN layers may increase the computational 

complexity of the model, which could impact 

the real-time processing and deployment of the 

system. 

Despite the continuous efforts of researchers, the 

problem of SQL injection (SQLi) continues to 

pose a significant threat in the digital landscape. 

It remains a threat within web applications, 

constantly evolving its attack techniques to 

exploit vulnerabilities. Although there are 

various detection techniques available, the fight 

against SQLi is far from being won. This 

ongoing battle is accompanied by several 

challenges, including the presence of false 

positives and negatives in detection, the 

complexity of web application logic, concerns 

regarding data security, and the limitations of 

available resources.  

Therefore, this research introduces a new 

approach called StateBERT, The system would 

enhance the detection of SQL injection, 

leveraging the complementary strengths of the 

state machine and BERT components. The 

operation of the model is showed in section III. 

METHODOLOGY 

This chapter presents the general research 

methodology that will be used in conducting this 

study, shown as a sequence of activities which 

will be carried out in phases and steps. 

This research proposed a model for the detection 

of SQL injection vulnerability by integrating 

State Machine and BERT. The model is 

Enhanced State machine and Bert model called 

StateBert. The Left side of the diagram is the 

state machine while the right side is the BERT 

part of the model It utilize both features of State 

machine and BERT as shown in Figure 1. 

A state machine will provide a structured 

representation of the expected behavior and 

valid transitions in an application's input 

processing flow. The State Machine accepts an 

SQL injection query as input, a state will 

analyze the query, which will define the 

legitimate sequence of states that an 

application's inputs should follow. It also 

identifies anomalous or malicious input patterns 

that deviate from the expected flow. The state 
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machine will capture the valid structure and 

syntax of SQL queries, allowing the model to 

detect deviations or injections that violate the 

expected patterns.  

The state machine transitions between states 

based on the character being processed in the 

input string, e.g Valid Character. The machine 

transitions to the 'Error' state (invalid) if an 

unexpected character or sequence is 

encountered, indicating a potential SQL 

injection attempt. The state machine accepts the 

input as valid if it reaches a designated end state 

(e.g., a state representing a complete SQL 

statement) without transitioning to the Error 

state. The state machine rejects the input as 

potentially containing SQL injection if it 

transitions to the 'Error' state at any point during 

processing. Finally, the acceptance state will be 

the output; it will consist of both malicious and 

benign queries.  

Furthermore, The BERT model will convert the 

state machine output into a sequence of token 

IDs, which represent the individual tokens 

(words, symbols, etc.) present in the output. This 

can be achieved by mapping each unique state 

and metadata element (e.g., SELECT, FROM, 

WHERE, CONDITION) to a unique token ID, 

creating a vocabulary of the state machine 

output elements. 

The sequence of states and metadata elements 

from the state machine output is then converted 

to a sequence of token IDs, which can be used as 

the input to the BERT model.  

The encoded state machine output, represented 

as a sequence of token IDs, is then passed as 

input to the BERT-based detection mechanism. 

The BERT model takes the input sequence and 

processes it through its multi-layer transformer 

architecture, generating a contextual 

representation of the input.The final layer of the 

BERT model produces a classification output, 

which indicates whether the input SQL query is 

classified as "normal" or "malicious." The 

BERT model's classification is based on its 

learned patterns and characteristics from the pre-

training dataset, which includes both benign and 

malicious SQL queries. If the BERT model 

classifies the input as "malicious," it suggests 

that the state machine output contains anomalies 

or suspicious patterns that are indicative of a 

potential SQL injection attack. 

 

Figure 1: Model of the Proposed StateBERT  
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By integrating the state machine output as the 

input to the BERT-based detection mechanism, 

the SQL injection detection system can leverage 

the complementary strengths of both approaches 

to enhance the accuracy and reliability of SQL 

injection detection. The state machine's 

structural analysis provides valuable information 

to the BERT model, which can then apply its 

advanced language understanding capabilities to 

make a more informed decision about the nature 

of the SQL query. 

Finally, evaluation and validation of the 

performance of the integrated approach using 

appropriate metrics and testing methodologies. 

The experiment to be carried out is shown is in 

section IV, V and VI bellow. 

Illustrated Example 

In this section, a real example is used to 

demonstrate what is expected from the system. 

Example 1: Normal SQL Query 

SELECT * FROM users 

WHERE id = 1 

The state machine would process the SQL query 

and identify the following key components: 

[ {'state': 'SELECT', 'start': 0, 'end': 6}, {'state': 

'FROM', 'start': 7, 'end': 11}, {'state': 'WHERE', 

'start': 12, 'end': 19},  {'state': 'CONDITION', 

'start': 20, 'end': 25} ] 

'start': This represents the starting position of 

the identified component or clause within the 

original SQL query string. In the example, 

the 'start' is 0, which means the SELECT clause 

starts at the 0th (first) character position of the 

SQL query.  

'end': This represents the ending position of the 

identified component or clause within the 

original SQL query string. In the example, 

the 'end' is 6, which means the SELECT clause 

ends at the 6th character position of the SQL 

query. 

The state machine would recognize 

the SELECT, FROM, WHERE, 

and CONDITION clauses, and capture their 

respective positions within the query. The 

structured output from the state machine would 

be encoded as a sequence of token IDs and fed 

into the BERT model. The BERT model would 

analyze the input and look for any patterns or 

anomalies that might indicate a SQL injection 

vulnerability. In this case, the BERT model 

would classify the SQL query as "normal," as it 

does not contain any suspicious or malicious 

elements. 

The state machine's structural analysis did not 

identify any anomalies, and the BERT model's 

classification of the query as "normal" indicates 

that the SQL query is safe and does not contain 

any SQL injection vulnerabilities. The combined 

detection mechanism would provide a high-

confidence assessment that the SQL query is 

safe and can be executed without any security 

concerns. 

Example 2: Malicious SQL Query 

SELECT * FROM users WHERE id = 1 

OR '1'='1' 

The state machine would process the SQL query 

and identify the following key components: 

[ {'state': 'SELECT', 'start': 0, 'end': 6}, {'state': 

'FROM', 'start': 7, 'end': 11},  {'state': 'WHERE', 

'start': 12, 'end': 19},  {'state': 'CONDITION', 

'start': 20, 'end': 32} ] 

The state machine would recognize 

the SELECT, FROM, WHERE, and the 

malicious CONDITION clause, which includes 

the suspicious OR '1'='1' condition. The 

structured output from the state machine would 

be encoded as a sequence of token IDs and fed 

into the BERT model. The BERT model would 

analyze the input and look for any patterns or 

anomalies that might indicate a SQL injection 

vulnerability. In this case, the BERT model 

would classify the SQL query as "malicious," as 

it contains a suspicious condition that is 

characteristic of a SQL injection attack. 

The state machine's structural analysis identified 

the malicious CONDITION clause, and the 

BERT model's classification of the query as 

"malicious" confirms that the SQL query 
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contains SQL injection vulnerability. The 

combined detection mechanism would provide a 

high-confidence assessment that the SQL query 

is malicious and should not be executed, as it 

poses a significant security risk. 

In the first example, both the state machine and 

the BERT model recognized the SQL query as 

normal, indicating that it is safe and does not 

contain any SQL injection vulnerabilities. In the 

second example, the state machine identified the 

malicious CONDITION clause, and the BERT 

model confirmed that the query is malicious, 

effectively detecting the SQL injection 

vulnerability. 

Proposed Experiment  

In this section, the set of experiment to be 

carried out is described. It contains 3 different 

components; Performance metrics, Data sets, 

and Expected result 

PERFORMANCE METRICS FOR SQL 

INJECTION EVALUATION   

Protecting against SQL injection (SQLi) is 

crucial in today's digital landscape. Although 

most studies use similar evaluation metrics; 

Accuracy, Precision, Recall and F1-score. Here's 

a set of evaluation metrics to assess the SQLi 

detection and prevention strategies. Most studies 

use similar evaluation metrics: 

•          
     

           
   equ 1 

•  Precision = 
  

     
   equ 2 

•         
  

     
   equ 3 

•          
   

         
  equ 4 

Where; 

• True Positive (TP): Measures the percentage of actual SQLi attacks correctly identified. Higher 

TPR indicates better detection accuracy.  

• False Positive (FP): Measures the percentage of legitimate requests flagged as malicious. Lower 

FPR minimizes disruptions to legitimate users.  

• True Negative (TN): Measures the percentage of legitimate requests correctly identified as safe. 

Higher TN signifies strong baseline protection.  

• False Negative (FN): Measures the percentage of missed SQLi attacks. Lower FN indicates 

robust detection capabilities.  

DATASET 

The dataset that will contain benign SQL query 

and malicious Query from “Kaggle” SQl This 

dataset is composed of 30,920 samples of SQL 

queries . Thus, it contains 11,331 Malicious and 

19,589 benign queries. For testing it will be 

selected randomly from the original dataset, 

where 2,000 are benign queries, while the other 

2,000 are SQLi queries. 

                  Table 5.1: Kaggle SQL Dataset 

S/No Dataset Malicious Normal Total 

1. Kaggle 11331 19589 30920 
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EXPERIMENTAL PLANNING 
In this study, After Successful implementation 

of StateBERT model, N-Fold Validation will be 

carried out, We will use the KFold class from 

the sklearn.model_selection module to perform 

the k-fold cross-validation. The 

cross_validate_sql_injection_detector function 

takes the input data (X) and labels (y) as 

arguments, and the number of folds (k) to use. 

The function will splits the data into k folds, 

trains the SQL injection detection model on k-1 

folds, and evaluates it on the remaining fold. 

This process is repeated k times, and the mean 

performance metrics (accuracy, precision, recall, 

F1-score) are calculated and returned. 

By using cross-validation, we can better estimate 

the model's performance and its ability to 

generalize to unseen SQL injection patterns. 

This information can help make more informed 

decisions about the model's deployment, identify 

areas for improvement, and track the model's 

performance over time as the SQL injection 

landscape evolves. 

CONCLUSION AND FUTURE WORK 

The research presented in this paper introduces a 

StateBERT approach that combines the strengths 

of a state machine and a BERT model to 

enhance the detection and mitigation of SQL 

injection vulnerabilities. This system represents 

a promising alternative and potential 

improvement over existing techniques and its 

limitations in their ability to comprehensively 

handle the diverse range of SQL injection attack 

vectors. The proposed approach aims to 

overcome these limitations by leveraging the 

complementary capabilities of the state machine 

and the BERT model. The state machine's 

structural analysis of SQL queries allows for the 

effective identification of syntax-based SQL 

injection attempts, while the BERT model's 

advanced language understanding enables the 

detection of more complex, context-dependent 

anomalies, such as tautology-based, union-

based, and inference-based SQL injection 

vulnerabilities. This combination of techniques 

provides a more holistic and robust defense 

against SQL injection threats. As the research 

progresses, the continued evaluation and 

refinement of the approach, including its 

performance, scalability, and real-world 

applicability, is crucial and will be Presented. 

Ongoing collaboration with security 

practitioners and the integration of the hybrid 

system into existing security frameworks may 

also yield insights and drive further 

enhancements. 
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