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ABSTRACT 
  

Medical imaging is undeniably a very important field in the provision of 

effective health care. It allows for early detection, diagnosis, and treatment of 

different kinds of diseases. On the other hand, preparation of labeled data from 

the biomedical domain poses difficulties, since it requires heavy privacy 

considerations and the expert radiologist to perform manual labeling of that 

data. Due to that reason, efforts to utilize advancements in deep learning 

algorithms are often hampered. Generating expert annotation of medical 

images at scale is difficult, costly, and time-consuming. This challenge is even 

greater in developing countries, especially in Africa, where there is a massive 

shortage of radiologists to annotate these images.  Another related issue in 

medical imaging is the scarcity of datasets, particularly in Africa, where there 

is a severe shortage of digital imaging modalities. This becomes more obvious 

when studying a particular disease, for instance. Hence, the scarcity of large, 

well-labelled datasets is the main constraint for deep learning applications in 

medical imaging. To solve this problem, we devise a self-supervised learning 

approach. The proposed method used inpainting as the pretext task and U-Net 

for segmentation. The pre-trained network was then fine-tuned on a varied 

sample of annotated datasets. Our results performance improvement with 50% 

of labeled data compared to supervise learning. This approach has the potential 

to significantly improve the applicability of deep learning for medical imaging 

in resource-constrained settings.  
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INTRODUCTION  

Lung cancer is one of the most common and 

deadly cancers in the world (Surveillance 

Research Program, National Cancer Institute, 

2024). The World Health Organization 

reported that lung cancer in low- and middle-

income countries is the leading and the 

second-leading cause of cancer deaths among 

males and females, respectively (Bray et al., 

2018). According to the American Cancer 

Society, the 5-year survival rate of lung cancer 

is 17.8%, much lower compared to that of 

breast cancer at 90.35% (Surveillance 

Research Program, National Cancer Institute, 

2024). The pulmonary nodules represent a 

potential symptom of lung cancer, for which 

detection at an early stage is crucial for the 

improvement of survival rates among patients 

(Yablonskii et al., 2020). Early detection 

means an enhanced chance of survival if the 

nodules are detected at an early stage 

(Yablonskii et al., 2020). 

Medical images can play an important role in 

health care for patients by preventing diseases, 

which can be done through their early 

detection and diagnosis, even treatment 

(Malhotra et al., 2022). CT is the major 

imaging technique applied in diagnosing and 

detecting lung cancers. However, the detection 

of lung nodules is a very challenging and time-

consuming task, even for expert radiologists. 

To that end, computer vision techniques, with 

deep learning being particularly prominent, 

have been increasingly used for lung nodule 

detection with considerable success recently 

(Greenspan et al., 2016). However, most of 

such approaches require a large number of 

well-structured and hand-labelled data, which 

is indeed a very critical challenge in many 

applications, especially in the medical domain. 

Hence, overcoming these issues, the work 

presented now is related to the elaboration and 

evaluation of a self-supervised approach for 

lung nodule segmentation. The proposed 

technique in this respect relies on the use of 

inpainting as a pretraining task (Pathak et al., 

2016), followed by fine-tuning of the U-Net 

model (Ronneberger et al., 2015) using limited 

available annotated data. This thereby learns to 

make effective use of unlabelled data for better 

performance in segmentation tasks with a 

minimum burden of extensive manual 

annotations. 

SSL provides a strong approach to utilizing the 

enormous, easily available amount of data in 

an unlabelled manner (Ozbulak et al., 2023). 

Since SSL automatically generates supervisory 

signals from the unlabelled data itself, it 

enables the learning of meaningful 

representations from the intrinsic structures 

and relationships within the data. It hence 

promises significant advances in medical 

imaging, especially in resource-constrained 

settings where annotated datasets are at a 

premium (Krishnan et al., 2022). 

The main motivation remains the same: high-

quality labelled datasets can be very expensive 

and time-consuming to create, whereas 

unlabelled data is continuously generated 

(Weng, 2019). SSL addresses this challenge by 

generating supervisory signals from the 

unlabelled data and provides a way for the 

model to learn meaningful representation from 

the intrinsic structures and relationships of the 

data (Chen et al., 2019). This could accelerate 

medical artificial intelligence development and 

increase the applicability of deep learning to 

medical imaging, especially in resource-

constrained environments. 

RELATED WORKS 

Self-supervised learning has recently emerged 

as a solution to utilize unlabelled datasets 

during neural network training (Spathis et al., 

2022). The advantage of self-supervised 

methods is the ability to learn useful 

representations without a need for manually 

labelled examples. It enables incorporating 

unlabelled examples to perform network pre-

training (Ozbulak et al., 2023). While deep 

learning, and specifically convolutional neural 

networks, has had great success recently, this 

may be partly due to exponential increases in 

available annotated data. For highly 

specialized domains, such as medical imaging 

and radiology, it is much harder to come 

across annotations (Greenspan et al., 2016). 

Thus, different strategies have been proposed 

that differ in the kinds of used pretext tasks 

and objective functions. There are generative 

methods and contrastive methods. 

The generation-based methods involve 

learning representations by networks that learn 

to generate some content. The authors of 

(Dosovitskiy et al., 2015) propose an 

architecture that restores the content of the 

randomly chosen patch removed from the 

image. In (Zhang et al., 2016), the authors 

propose image colourization as a form of the 

pretext task. Images in the dataset are 
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converted to greyscale, and then the task of the 

network is to restore full information about the 

colour. Context-based pretext tasks rely on the 

semantic and spatial information within the 

image. Furthermore, the authors of (Selvan et 

al., 2020) used a generative approach to self-

supervised learning to segment high-opacity 

chest X-rays (CXRs) from normal CXRs. 

In contrast, approaches based on contrastive 

losses have recently shown great potential 

(Chen et al., 2019). This family of methods 

involves applying modification to the image. 

The network is trained in such a way as to 

make representations of two different views of 

the image similar while making those views 

dissimilar to other examples in the dataset. 

This approach makes the representations 

invariant under transformation applied to the 

images (Doersch et al., 2015). It was shown 

that the quality of the learned representations 

benefits from such a form of pre-training. 

The authors of (Chen et al., 2020) propose a 

framework called ―SimCLR‖ for modelling 

the above problem in a self-supervised 

manner. It blends the concept of Contrastive 

Learning with a few novel ideas to learn visual 

representations without human supervision 

(Chen et al., 2019). The framework takes an 

image and applies random transformations to it 

to get a pair of augmented images xi and xj. 

Each image in that pair is passed through an 

encoder to get representations. Then a non-

linear, fully connected layer is applied to get 

representations zi and zj, respectively. The 

task is to maximize the similarity between 

these two representations zi and zj for the 

same image. The authors of (Chaitanya et al., 

2020) adopted and extended the works of 

(Chen et al., 2020) in the medical domain by 

introducing a local version of the contrastive 

loss to learn distinctive representations of local 

regions that are useful for per-pixel 

segmentation. 

In terms of feature learning, another self-

supervised research proposed, which is named 

context encoders. Feature learning by 

inpainting (Pathak et al., 2016) is trained to fill 

in a missing piece in the image. 

Reconstructing the original input allows 

learning meaningful latent representation. But 

the method comes with a shortcoming—it 

changes the image intensity distribution. Thus, 

the resulting images belong to another domain, 

and the learned features may not be useful for 

images in the original domain. 

The authors of (Chen et al., 2019) propose a 

novel strategy for self-supervised which they 

term context restoration. The paper validates 

the context restoration strategy in three 

common problems in medical imaging: 

classification, localization, and segmentation. 

The method is straightforward that select 

random two isolated small patches in a given 

image and swap their context. Repeat these 

operations T times, in which the intensity 

distribution is still preserved, but its spatial 

information is altered. 

In (Gidaris et al., 2018) the proposed network 

is called RotNet. The dataset used during 

pretext task training is created by performing 

random rotations to images. The network task 

is to predict the rotation angle. Although it can 

be easily implemented, the method provides a 

significant improvement. DeepCluster, 

proposed in (Caron et al., 2018) uses a 

clustering algorithm to group representations 

into clusters. Then, those groups are utilized 

during supervised training. Thus, the training 

involves alternating between clustering the 

representations into a group and training the 

network to predict which group the image 

belongs to. 

METHODOLOGY 

Our proposed self-supervised method for 

pulmonary nodule segmentation involves two 

key stages: pretext task training and 

downstream task training. To improve the 

clarity and organization of this section, the 

methodology is structured into three distinct 

subsections: Pretext Task, Downstream Task 

and Data Augmentation. 

Pretext Task 
The pretext task training is performed to learn 

visual features that can be utilized in the 

downstream task (Ozbulak et al., 2023). This 

stage uses an unlabelled dataset, where the 

common pipeline involves applying 

transformations to the images and training the 

network to predict these transformations 

(Weng, 2019). For our study, we employed 

inpainting as the pretext task (Pathak et al., 

2016), where parts of the lung CT scan patches 

(128x128x1) were corrupted and then fed into 

a modified U-Net autoencoder (Ronneberger 

et al., 2015). The autoencoder reconstructs the 

missing pixels, and the reconstruction loss 

(L2) is computed by comparing the generated 

image with the original. This task helps the 

network learn meaningful latent features, 

crucial for effective segmentation. This is 
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considered stage 1 of the self-supervised 

process, as shown in Fig. 1. 

Downstream Task 

After completing the pretext task, the learned 

weights are used to initialize the parameters 

for the downstream task, which is the primary 

task of pulmonary nodule segmentation. 

Similar to the pretext task, the U-Net 

architecture is utilized here. The input images 

and their corresponding masks are processed 

through the network to produce segmented 

outputs. The binary cross-entropy loss function 

is used during training, with the initialized 

weights from the pretext task providing a 

strong starting point for the segmentation task. 

Data Augmentation 

Data augmentation has been used here to 

enhance the generalization performance of the 

deep neural network by incorporating more 

diversity into the training data (Xu et al., 

2020). Several augmentation techniques used 

in this study, such as rotation, horizontal 

flipping, vertical flipping, and combined 

flipping, were utilized. 

Each of these augmentation techniques 

contributes its share to increasing model 

performance by making the data more variant. 

 Rotation would enable the model to 

recognize the nodules from a different 

angle, which is important because 

nodules may appear in many 

orientations within the lungs. 

 Horizontal and vertical flipping will 

avoid orientation bias of the model for 

nodules, enabling it to generalize well 

for any patient's scan. 

We have excluded stretching and skewing 

since they may distort the shape by not 

uniformly transforming the nodules. This is 

very important for correct segmentation, as its 

shape could easily be changed to mislead the 

model during training and decrease the 

accuracy of the segmentation job. We select 

the augmentation techniques in such a way 

that they maintain the structural integrity of 

the nodules, hence making sure that the model 

will learn to segment the lung nodules in an 

orientation and positioning variance robust 

manner.

 

 

 

Figure 1: The general pipeline of self-supervised learning. An unlabelled dataset is used to pre-train 

the network (Stage 1), that is then used to train the network on a labelled dataset (Stage 2) 

 
(a) No augmentation  (b) Inpainting 

Figure 2: 2D slices of CT scans of lung legions with (a) and without data augmentation (b). 
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Figure 3: Schematic diagram of 2D U-Net: a CT image of 128 x 128 pixels was input, down-sampled 

to 8 x 8, and then up-sampled. 

 

EXPERIMENT AND RESULTS 

Data 

The dataset used in this research consists of 

520 cases extracted from the publicly available 

data from the Lung Image Database 

Consortium image collection (LIDC/IDRI) 

(Armato et al., 2011). It is the largest publicly 

available reference database of chest CT scans 

(Armato et al., 2011). It consists of diagnostic 

and lung cancer screening computed 

tomography (CT) scans with marked-up 

annotated lesions. CT images from each scan 

are associated with an XML file recording 

nodule reports and diagnosis reports of the 

image annotation process from four 

experienced thoracic radiologists. Each 

LIDC/IDRI annotation was created by a two-

phase reading process. In the first blinded 

reading phase, suspicious lesions were 

independently annotated by four experienced 

thoracic radiologists as non-nodule >3mm, 

nodule >3mm, or non-nodule (any other 

pulmonary abnormality). In the second non-

blind reading phase, the blinded results of all 

other radiologists were revealed to each 

radiologist, who then decided to accept or 

reject each annotation. No consensus was 

forced.  

Pre-processing 
In the proposed method, all the input images 

were re-scaled to 128x128. Before dividing it, 

we apply augmentation as described in the 

methodology. After augmenting the data, we 

have 520 positive and negative patches, which 

are divided into training and testing sets. The 

training set consists of varied cases ranging 

from 50 to 500 and the text set consists of a 

fixed 20 cases. 

Evaluation 

The dice coefficient loss is selected as the loss 

function (Han et al., 2020). The dice 

coefficient, as in (1) is often used in medical 

image segmentation (Shi et al., 2022). 

Dice Coefficient = 2 ∗ |X ∩ Y |/(|X| + |Y |)                    

(1) 

It is often used to calculate the similarities 

between two cases.  

Experimental setup 
A series of experiments were done to evaluate 

the performance of the various strategies used. 

We first tried supervised learning with a varied 

number of training sets ranging from 50 to 500 

cases. We then perform the self-supervised 

learning approach using inpainting as 

proposed by (Pathak et al., 2016). We show 

the Dice score for each of the models in Table 

1, and the segmentation results produced by 

the model are shown in Fig. 5. The proposed 

model is based on the state-of-the-art 

segmentation model, U-Net (Ronneberger et 

al., 2015). The deep learning framework used 

in building the model is TensorFlow (Abadi et 

al., 2015). Before performing the proposed 

approach of self-supervised learning, we 

performed supervised learning with a reduced 

number of training cases, and the results are 

shown in Table 1. We split each dataset into a 

training set and a test set, each consisting of 

2D scan slices with their corresponding 

segmentation labels. The model was pre-

trained as described in the methodology. The 

input layer contained 128x128 pixels with 1 

channel. We performed 2D convolution 

(Conv2D) by applying a 2x2 filter to the input, 

in which the ’same’ padding filled the 

perimeter of the input with zeros compensating 

for the reduction in size of the image produced 

by the filter. Max pooling employing 
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MaxPooling2D, by which the maximum value 

is selected from each region and then 

compressed, was performed 2-dimensionally 

to reduce pixel size. Conv2DTranspose is an 

operation that is the opposite of that used for 

Conv2D, whereby pixel size is increased using 

a 2x2 pixels filter. Batch Normalization (BN) 

is a process by which biased output 

distribution, obtained from the previous layer, 

is corrected. Dropout is a process by which a 

portion of the units are randomly deactivated. 

Concatenation is a process applied to connect 

the input arrays. Rectified linear unit (ReLU) 

was used for the input and hidden layers, and 

sigmoid for the output layer as the activation 

function. The pre-trained model is then fine-

tuned on varied percentages of labelled data 

ranging from 50 to 500 cases from the training 

set for the downstream task of pulmonary 

nodule segmentation using cross-entropy loss. 

Stochastic Gradient Descent with momentum 

algorithm is used as the optimizer, with 

learning rate set to 0.001, momentum 

coefficient set to 0.9, and batch size set to 32. 

The test set consists of 20 fixed cases. It is 

used for training the algorithm, whereas the 

test set is employed to determine the 

performance of the algorithm. 

 

Table 1: Models’ performance on the dataset 

 

 
Figure 4: Line plot showing the relationship between Dice score against the amount of training data 

            

(a)       (b)         (c) 

Figure 5: Segmentation results (a). Original 2D CT image (b) Ground truth. (c). Result. 
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DISCUSSION 

In this work, we demonstrate that the use of 

the self-supervised learning method of 

inpainting during the pretext task, 

supplemented with extensive data 

augmentation, significantly enhances the 

performance of the model on lung nodule 

segmentation. On the other hand, the proposed 

method obtains the same accuracy of nodule 

segmentation as fully supervised learning 

models even when trained with 50% labeled 

data. This is particularly important in medical 

imaging, where it is often difficult and 

expensive to obtain large, well-annotated 

datasets (Krishnan et al., 2022). 

Analysis of Results 

The Dice coefficient plotted, as the 

performance of the model for segmenting, 

indicates that self-supervised pretraining 

effectively captured vital features in the lung 

nodules. Such are then fine-tuned in the 

subsequent segmentation task. Inpainting helps 

the model learn robust features by 

reconstructing the missing parts of an image. 

Besides being very important, this intrinsic 

capability enables the nodules to be detected. 

Apart from that, rotation and flipping features 

in data augmentation will enhance the 

generalizing ability of the model across 

various variations that may appear in the 

dataset. This ensures that the segmentation 

isn't biased towards any particular orientation 

or position of the nodules. 

These results suggest that this approach 

reduces the dependency not only on large 

annotated datasets but also increases model 

robustness, enhancing its adaptiveness to 

changes in the input data. The capability of 

high performance with less labeled data is 

highly desirable in resource-constrained 

settings where access to annotated medical 

images is limited (Krishnan et al., 2022). 

Implications 

The implications of these findings are 

significant for clinical settings. By reducing 

the need for extensive manual annotation, the 

proposed method can greatly improve 

radiologists’ efficiency, allowing them to 

focus on more complex cases while the model 

handles routine segmentation tasks. This 

automation could also expedite the diagnostic 

process, enabling quicker detection and 

treatment of lung cancer, which is critical for 

improving patient outcomes. 

Moreover, the method’s adaptability suggests 

that it could be integrated into large-scale lung 

cancer screening programs, providing a 

reliable tool for early detection of pulmonary 

nodules. The ability to maintain high accuracy 

with reduced labeled data also means that the 

model can be effectively used in regions with 

limited medical resources, contributing to 

global health efforts in combating lung cancer. 

Limitations 

Despite the success of such promising results, 

there are several limitations that need 

consideration about the proposed method. 

First, most of the superior performance 

depends on some particular types of data 

augmentation, which may not be generalized 

for all medical image tasks (Xu et al., 2020). 

For example, rotation and flipping are 

informative in the segmentation of lung 

nodules, but different augmentation is desired 

for other kinds of medical images in order to 

preserve the critical features. 

Another limitation is the performance of the 

model, which may be different when various 

data sets or imaging modalities are used. The 

model was developed and checked on one data 

set of lung CTs, and its performance may 

differ when dealing with other types of 

medical images. 

Another limitation of this study is that, in the 

self-supervised learning phase, only one 

pretext task-inpainting-was tried out. While 

that worked rather well, it is probably not the 

best pretext task available (Ozbulak et al., 

2023). Alternative pretext tasks, including but 

not limited to contrastive learning and 

generative modeling, may yield further 

improvements in the model. 

Future Research 

This work points to several interesting avenues 

for further studies. One such avenue of interest 

could be an investigation of applying the 

proposed method to brain MRI segmentation, 

detection of breast cancer in mammograms, or 

analysis of retinal images. All these tasks have 

their specific complications; adaptation of the 

self-supervised approach for image 

segmentation in these tasks may bring 

significant benefits for diagnostics in many 

medical spheres. 
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Another interesting avenue of future research 

lies in how multiple pretext tasks might be 

combined during the self-supervised learning 

phase to yield even better feature extraction. 

For instance, such work might combine the 

inpainting task (Pathak et al., 2016) with other 

tasks, such as jigsaw puzzles or colorization, 

toward an even more complete understanding 

of image structure that results in even better 

segmentation. 

Further, increasing the dataset in the number 

and variability of lung CT scans from different 

populations and scanning conditions would 

help investigate generalizability. Performance 

testing on data across a range of demographic 

groups, scanner types, and levels of image 

quality would provide highly useful 

information about its robustness and reliability 

in the real clinical environment. 

The model can be further tuned with respect to 

its integration with other advanced techniques, 

such as transfer learning and federated 

learning, which would decrease its need for 

labeled data even more, besides extending its 

applicability into decentralized healthcare 

environments. 

 CONCLUSION 
Obtaining a high-quality dataset in the medical 

domain remains a huge challenge, especially 

in low-resource settings such as Africa 

(Krishnan et al., 2022). Self-supervised 

learning can be beneficial in this regard. Our 

end-to-end neural network automatically 

learned nodule-sensitive features from the 2D 

CT images to improve the segmentation 

performance. This was made possible by the 

self-supervised learning technique of 

inpainting (Pathak et al., 2016) which helps 

the network learn useful latent features as it 

reconstructs the missing pixels in the image 

during the pretext task. The proposed method 

can support the research on automated lung 

nodule segmentation as well as offer a 

powerful and effective tool for computer-aided 

diagnosis of lung cancer, where accurate 

segmentation of pulmonary nodules is 

essential. Given the accuracy of our algorithm, 

our automated nodule detection tool has the 

potential to be a powerful clinical tool that can 

be implemented in clinical practice for the 

accurate detection of nodules in lung cancer 

screening projects. This tool will not only 

enhance the manual identification of 

pulmonary nodules but will also reduce the 

reading time when used as an assisting tool to 

augment the radiologist’s workflow. Overall, 

we believe that the proposed initialization, 

combined with a data augmentation technique 

such as inpainting (Pathak et al., 2016) 

provides a simple toolbox for vastly improving 

performance in segmentation tasks in medical 

imaging, especially in clinically relevant low-

resource settings. 
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