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ABSTRACT 
  

Crypto ransomware is a challenging cybersecurity threat that encrypts the files 

of the victim and demands a ransom in exchange for the decryption key. 

Traditional signature-based protection methods, such as antivirus and anti-

malware, have proven in-effective at preventing crypto-ransomware attacks; 

therefore the production of ransomware is on the rise. Existing methods for 

early detection of crypto-ransomware attacks during the pre-encryption phase 

before encryption happens rely on a timing thresholding methodology to set the 

border of the pre-encryption stage. However, the fixed time threshold strategy, 

suggests that the samples begin encryption at the exact moment. This is not 

always the case since timing varies between crypto-ransomware families as a 

result of the obfuscation techniques used to evade detection. This research 

work therefore, proposed the creation of a Pre-Encryption Detection-Learning 

Algorithm (PEDLA). PEDLA monitors the pre-encryption stage for every case 

separately relying on the initial appearance of any API‟s related to 

cryptography to establish the pre-encryption stage boundary, whereby features 

are extracted and used in training a prediction model using the Random Forest 

machine learning algorithm. The sample data was obtained from widely used 

ransomware repositories such as VirusShare, Virus total and kaggle.com. The 

model achieved a detection accuracy of 98.6% with False Positive Rate (FPR) 

of 1.9%. Four classifiers including Support Vector Machines (SVM), K-

Nearest Neighbour (KNN), Multi-Layer Perceptron (MLP), and AdaBoost, 

were used to evaluate the model's classification abilities. Furthermore, a 

comparison was done between the related works and PEDLA. The findings 

show that PEDLA performed better across most calculated metrics, such as 

accuracy, precision and recall.  

. 

Corresponding author: Raymond Ternenge Igbudu, Email: igbuduraymond@gmail.com 

Department of Computer Science, National Open University of Nigeria, Abuja, Nigeria 

 

 



O. A. Okunade et al.   ISSN: 2811-2881 

97 

 

INTRODUCTION  

Cyber security is the practice of safeguarding 

data, networks, and devices from cyber-

attacks. These cyber-attacks are normally 

launched with the intent to alter, destroy, or 

access the data of the user or produce intrusion 

in the users‟ business processes. The 

implementation of cyber-security has become 

critical and demanding because there are very 

few individuals against many computing 

devices. These cyber attackers are typically 

evil-minded people who are usually interested 

in altering, destroying, and/or accessing the 

data and reputation of the user. Cyber-security 

would not be possible if attention is not given 

to malware attacks (Tariq, 2020). The creation 

of intrusion detection systems and anti-viruses 

has prompted cyber-criminals to also create 

very powerful and advanced malware which 

can evolve; causing some serious infections 

and can even metamorphose (Gazet, 2010). 

Malware is a program developed to cause 

damage to the network of a computer, client, a 

computer, server and/or some other resources 

of the computer user. This malware usually 

disables and causes damage to computer 

resources without the knowledge of the user 

and contravenes the rights of the user. 

Malware has several forms such as Viruses, 

Trojan, Rootkit, Worms, crypto ransomware, 

and so on. 

Crypto-ransomware is one of today's most 

dangerous types of malware. Once infected, 

the malware encrypts the victim‟s data and 

blocks access until ransom is paid, resulting in 

multi-million dollar cyber-extortion each year. 

This type of malware has caught the interest of 

cybercriminals due to numerous success 

stories with global ramifications, such as 

cryptowall, Wannacry, and NotPetya (Oz et 

al., 2021). Because of the huge level of 

interest, plenty of other new crypto-

ransomware have been developed, as well as 

improving existing ransomware with new 

variants.  

Crypto-ransomware is distinguished by its 

irreversible effect even after detection and 

removal. As such, early detection is critical to 

safeguarding user data and files from being 

held for ransom. Cybercriminals have refined 

crypto-ransomware attack aspects such as 

greater encryption algorithms, worm-like 

capabilities, pseudo-anonymous payment 

methods, and the availability of Ransomware-

as-a-Service (RaaS) on the dark-web, which 

facilitates creation of new ransomware 

variants (Oz et al., 2021). As a result, crypto-

ransomware attacks are on the rise. However, 

conventional malware detection methods are 

ineffective for detecting crypto-ransomware 

(Al-Rimy et al., 2021).  

Many commercial and open-source anti-

crypto-ransomware solutions rely on 

signature-based detection methods, which are 

quick and accurate for detecting known 

malware but far too restrictive for detecting 

zero-day attacks (Kok et al., 2020). The 

signature repositories must be updated on a 

regular basis, and due to cybercriminals' great 

interest in ransomware, new variants of 

ransomware that can bypass antiviruses 

continue to emerge at a rapid pace. Despite 

continuous improvements or updates, malware 

authors maintain a one-step advantage because 

new variants are produced quicker than new 

signatures can be generated, tested, and added 

to malicious signature repositories (Kok et al., 

2020).  

Detection methods capable of dealing with 

zero-day crypto-ransomware attacks strive to 

detect the infection based on broader features 

such as ransomware-specific operations rather 

than just file signatures alone. In this regard, 

several strategies for detecting crypto-

ransomware attacks have been proposed; they 

can be classified as data-centric or process-

centric (Al-Rimy et al., 2021).  

The data-centric solutions monitor the victim's 

computer's digital assets and sound an alarm if 

any suspicious changes are found (Al-Rimy et 

al., 2021). They examine the file structure 

changes to see whether they are suspicious. 

This approach, however, cannot tell if the file 

structure change was caused by a crypto-

ransomware attack or by benign application, 

resulting in a high rate of false alarms (Al-

Rimy et al., 2021). Furthermore, the data-

centric method may not entirely guard against 

ransomware attacks since it sacrifices a portion 

of the files before detection (Scaife et al., 

2016). These files may be worth more to the 

victim than the other data.  

Process-centric solutions, on the other hand, 

are classified into two groups. One, by 

monitoring system activities such as, file 

system access for example privilege elevation, 

network activity, resource usage and 

interactions with the operating system, and 

triggering an alarm when particular 
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encryption-related events occur (Kharaz et al., 

2016). However, relying on ad hoc incidents 

for crypto-ransomware attack detection raises 

the likelihood of false alerts because crypto-

ransomware is not always the cause; benign 

applications can also cause them. (Al-Rimy et 

al., 2021). Additionally, there is no assurance 

that such ad hoc events will always occur prior 

to encryption; they may occur after encryption 

due to changes in attack techniques (Kharaz et 

al., 2016). As a result, this strategy is 

ineffective for early detection.  

The second type of process-centric solutions 

monitors the running process's behaviour and 

gathers various forms of behavioural data 

which are subsequently utilized to train 

different machine learning classifiers. The key 

obstacle with the existing methods for early 

detection of crypto-ransomware is lack of 

adequate data during the initial stages of an 

attack, which limits the capacity of feature 

extraction algorithms in early detection 

solutions to discover attack features, resulting 

in data loss, low detection accuracy, and a high 

false-positive rate (Al-Rimy et al., 2020). 

Furthermore, they adopt a set time-based 

thresholding method to determine the pre-

encryption stage borders (Scaife et al. 2016: 

Hwang et al. 2020).  

However, the set-time thresholding strategy, 

suggests that the samples begin encryption at 

the exact moment. This is not always the case 

since timing varies between crypto-

ransomware families as a result of the 

obfuscation techniques used to evade detection 

(Al-Rimy et al., 2020). As a result, this 

strategy may miss the start of the encryption 

operation, resulting in encryption of several 

files before detection (Scaife et al., 2016).  

Regardless of the efforts put forth, the existing 

approaches, inevitably, have limitations. 

Crypto-ransomware is still an intricate 

problem that requires further study to improve 

current detection methods. In light of this, this 

work proposes development of a model 

capable of detecting crypto-ransomware 

during the pre-encryption stage, before 

encryption happens. 

Aslan (2020) explains malicious software 

(malware) detection as the act f evaluating 

the content of a program to find out if it is 

malicious or benign. Generally, detection 

methods are grouped into 3 kinds:  

 Behavior-based: those that make use 

of dynamic analysis,  

 Signature-based: those that make use 

of static analysis, and  

 Hybrid: those that use both dynamic 

and static analysis.  

Signature-based detection techniques examine 

the code of an application before it is 

implemented to adjudge if it has the capability 

of malicious action. If the static analysis 

identifies any malicious code, then the 

executable shall be halted from executing. The 

signature analysis entails getting code string 

patterns (known as signatures) from codes of 

the target application and matching them to the 

malicious code patterns database 

(Nieuwenhuizean, 2019).  

This technique is effective and quick in 

identifying ransom-ware that is known. The 

failure of signature-based method to identify 

ransomware that is unknown is its main 

shortcoming. A malicious executable code 

could be detected only after it has been 

confirmed as being malicious and included in 

the database of malicious signatures 

(Nieuwenhuizean, 2019). This definitely has 

numerous resultant effects for the 

effectiveness of static-based detection; 

 Firstly, it is not effective against code 

obfuscation; ransomware authors 

make use of code-obfuscation 

techniques so as to keep on changing 

malware so that every variant appears 

different from others in order to avoid 

detection by the signature-based 

methods.  

 Secondly, the signature-based method 

of detection is not effective against 

ransom-ware that has short cycles of 

development. his has become a 

challenge for signature-based 

detection systems because new 

ransomware forms are developed 

faster than new ransom-ware 

signatures can be collected, tested and 

included in the malware signature 

repositories (Nieuwenhuizean, 2019).  

 Thirdly, signature-based detection is 

not effective in the face of targeted 

ransomware. Making use of the RaaS 

(Ransomware-as-a-Service) paradigm, 

bots can change signatures in order to 

target specific companies. This makes 

it easy for the creation of a very 

personalized ransomware variant with 
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the capability of evading detection by 

signature-based methods. 

Various authors have put forward some static 

analysis-based techniques for identifying 

cryptographic ransomware attacks.  

Zhang (2019) put forward a model for 

transforming operation code (opcode) 

sequences into N-gram sequences that were 

then utilized for training the machine learning 

model: the accuracy of the model was 91.43%. 

In Baldwin (2018), Static analysis was utilized 

to remove operation codes (opcodes) from 

benign and malicious Portable Executable 

files. Then, the characteristics of the extracted 

opcode were used as input to Support Vector 

Machine (SVM) machine learning classifier. 

Here, the very best accuracy gotten from 5 

cryptographic ransom-ware variants was 

around 96.5%.  

Alzahrani (2018) put forward a static-analysis 

technique known as Ran-Droid. This approach 

searches for a possibly suspicious information 

in the application code which could be an 

image, or a text. The main reason behind this 

is that ransomware's major aim is to extort 

monetary ransom from its victims. Because of 

this, these ransomware variants need to have a 

message of threat in its codes. The major 

drawback of this technique is this; the message 

of threat may be released after the data of the 

victim has been encrypted as a payload.  

To manage the drawbacks of signature-based 

detection techniques, the methods of detection 

with the capability of handling cryptographic 

ransomware should have its focus more on 

broader features like ransomware-specific 

processes instead of file-signatures only.  

A behavior-based method of detection 

involves evaluating the behaviors and 

interactions of a process against their 

surroundings in realtime so as to identify 

malicious intention. Every executable files are 

normally taken to be unknowns and it is the 

responsibility of the executable file to show it 

is safe and it is not malicious. Maliciously 

behaving operations will be detected and 

quarantined (Nieuwenhuizean, 2019).  

Behavior-based methods of detection are 

categorically grouped as process-centric or 

data-centric. The process-centric approach 

offers two solutions. Firstly, by evaluating the 

resources of a system like file system access 

for instance, resource usage, network activity, 

privilege elevation and communication with 

OS. Amongst these, the cryptographic ransom-

ware system activity is differentiated by the 

serious encryption of the data of the victim, 

which results in a file system activity that is 

unusual (haraz, 2016). Secondly, by 

evaluating the behavior of a process that is 

running, examining each line of code, and all 

potential activities carried out by the code are 

evaluated, such as having access into any 

crucial files or files that are not relevant, 

processes and internal services, and collecting 

different kinds of behavioral data that are then 

used to train various machine-learning 

classifiers (l-Rimy, 2021).  

The data-centric technique monitors the digital 

assets of the victim‟s computer, and alerts the 

user if any changes are found to be suspicious. 

The data-centric technique also monitors 

changes in file structures so as to know if they 

behave suspiciously. The data-centric 

techniques employ strategies such as file 

entropy, decoy techniques, and contents 

similarity measures. They do this to know 

what is going on in the structure of the file 

both before and after access (l-Rimy, 2021). 

The main drawback of behavior-based method 

of detection is that it is very difficult to 

execute; and, dynamic analysis on many 

dimensions causes delay that affects 

performance negatively. Also, methods of 

advanced code obfuscation make it impossible 

to conduct proper ransom-ware examination. 

Finally, the behavior of some ransomware 

variants in virtual machines or sandboxes is 

not proper. 

Alzahrani (2018) proposed Unveil, which is a 

dynamic analysis technique that runs 

applications in a virtual environment and 

examines the activities of file system and the 

interactions of desktop for suspicious behavior 

that may identify ransom-ware infections. 

Alzahrani‟s Unveil had a rate of detection of 

96.3%. However, Unveil could confuse heavy 

activity of the file system as the presence of 

ransom-ware.  

Hwang (2020) propounded a mixed-detection 

model for ransom-ware that is two-phase; the 

Markov model, and a Random Forest (RF) 

model. The authors tested Application 

Programming Interface classification and 

disclosed that it had a 97.3% accuracy and a 

1.5% FNR with a 4.8% FPR. 

Takeuchi (2018) presented a ransom-ware 

detection technique based on SVM‟s, which 

learn the ransom-ware Application 
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Programming Interface calls as features, 

giving way to the support vector machines to 

identify ransom-ware that were previously 

unknown. The authors used 276 malware 

samples and 312 benign samples and got a rate 

of detection of 97.48%.  

Wecksten (2016) examined the behavior of 4 

kinds of cryptographic ransom-ware in a 

virtual-machine that was running the Win 7 

operating system. These scientists discovered 

that the executable, vssadmin.exe is so much 

utilized in cryptographic ransom-ware attacks, 

and they proposed that users should stop the 

use of“vssadmin.exe” to avoid this cyber 

attack.  

The developers of Continella (2016) attempted 

to find the Advanced Encryption Standard 

(AES) key in process memory through the 

interception of file access system calls. If the 

original file is somehow already encrypted, 

this technique gives room for its restoration. 

Unfortunately, this technique works only with 

ransom-ware that makes use of AES 

symmetric encryption. This technique will fail 

if the ransom-ware uses another encryption 

technique. Ransom-ware with administrator 

privileges can also uninstall this technique. 

The hybrid system of ransom-ware detection 

detects cryptographic ransom-ware by using a 

combination of signature-based and behavior-

based detection approaches.  

Subedi (2018) propounded a technique that is 

integrated and is a combination of static 

analysis and run-time analysis to connect code 

segments with the dynamic behavior f 

ransom-ware. These scientists developed 

CRSTATIC, which is a reverse engineering-

based tool for analysis used for identifying 

cryptographic ransom-ware.  

Shaukat (2018) presented an (STL), Strong 

Trap Layer, which combines static analysis 

and dynamic analysis to produce a set of 

attributes that makes use of machine-learning 

strategies to depict the behavior of ransom-

ware. The rate of detection was reported as 

98% when making use of the 

Gradientreeoostinglgorithm (GTBA).  

Other authors proposed to fight the 

cryptographic ransom-ware threat by the use 

of key escrow. This key escrow is a technique 

of saving keys and other cryptographic info for 

future use. Using the ransom-ware viewpoint, 

key escrow explores to gather secret keys and 

other materials while the ransom-ware 

encrypts files such that the files can be gotten 

back after the attack. This technique is 

predicated on the basis that should the 

encryption keys be recovered after the attack, 

the ransom-ware-encrypted files could be 

retrieved.  

Kolodenker (2017) introduced PayBreak, 

which is a crypto-API monitoring strategy that 

excerpts cryptographic variables and 

encryption keys, and saves the keys inside a 

key vault such that when there is a ransom-

ware attack, the encrypted files could be 

decrypted with the use of brute-force 

techniques, making use of the encryption keys 

and other cryptographic variables gotten at the 

key vault. According to the creators, ransom-

ware can evade PayBreak by using third-party 

libraries and code obfuscation strategies 

(olodenker, 2017).  

METHODOLOGY 
Shown in Figure 1, is a research framework 

designed for this research work designed to 

meet all the objectives of the research. There 

shall be five blocks of research activity in this 

work, and they are Research Samples, 

Database, Cuckoo Sandbox, Machine 

Learning, and Data. An explanation of each of 

the blocks is detailed below (Kok et al, 2020) 



O. A. Okunade et al.   ISSN: 2811-2881 

101 

 

 
Figure 1: PEDLA Model Framework 

Research Samples 

The researchers started off by obtaining 

samples (ransom-ware and good-ware) from 

VirusShare (VS). This ransomware data-set 

was composed of 357 samples. These samples 

were grouped based on their families and 

defined as cryptographic malware by many of 

the anti-virus programs present on Virus-total. 

Those research samples stand for various 

families such as Petya, CryptoWall, Cerber, 

WannaCry, and TeslaCrypt. The goodware 

data-set had 75 samples collected from 

kaggle.com, which is a data science and 

machine learning online community platform. 

VirusShare is a malicious software repository 

which shares malware collections with 

forensic analysts, incident responders, security 

researchers, and those who are curious 

morbidly. VS had 68,671,265 malware 

samples as at the time this research work was 

conducted (Kok et al, 2020). 

 

Table 1: Dataset 

S/No. Crypto-ransomware Family Number of Samples 

1 Petya 35 

2 CryptoWall 28 

3 Cerber 57 

4 WannaCry 40 

5 TeslaCrypt 31 

6 CryptoLocker 48 

7 Cyrar 67 

8 Satana 51 

 

Through VS the researcher successfully 

obtained 357 new cryptgraphic ransom-ware 

samples. 

Fr pre-encryption sample selection, the 

researcher passed all the samples collected in 

the Cuckoo Sandbox. This sandbox produced a 

record that stated the sequence f all API‟s 

(Application Program Interface) that were 

called by the sample. Those samples that had 

the „crypt‟ keyword in there API sequence 

were chosen. The API‟s with the „crypt‟ 

keyword were fund to carry out encryption 

function as denoted in Table 2. 
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Table 2: API‟s with the „crypt‟ keyword 

S/No. Application Program Interface 

(API) 

DESCRIPTION 

1 CryptHashData To append data to a hash object that allowed long or 

discontinuous data streams 

2 CryptGenKey To generate a random encryption key in symmetrical 

encryption or public/private key pair in asymmetrical 

encryption 

3 CryptCreateHash To start hashing data stream that allowed communication 

in a secured session 

4 CryptEncrypt To perform encryption function using encryption key as 

specified by CSP using hkey  parameter 

5 CryptDecodeObjectEx To decode according to type of structure as specified by 

ipszstructType parameter 

6 CryptExportKey To export an encryption key in symmetrical encryption 

or a pair of encryption keys in asymmetrical encryption 

from specific CSP securely 

7 CryptAcquireContextW  

8 CryptAcquireContextA To obtain key container from a specific cryptographic 

service (CSP) that was called by CryptoAPI 

 

The Cuckoo Sandbx 

The Cuckoo Sandbox is a malicious software 

(malware) analysis system which is used to 

check a program‟s behavior by running the 

program in a sandbox. As soon as the program 

has been deposited in the sandbox, Cuckoo 

Sandbox tracks all the Application Program 

Interface (API) calls made by the prgram. 

hereafter, the Cuckoo generates a report that 

has a sequence of all the API‟s that are being 

called (Kok et al, 2020). 

The Environment Setup 

The dynamic analysis of the crypto 

ransomware was carried out in a controlled 

environment built on a computer with Core i5 

processor @ 2.3 GHZ and 8 GB RAM. The 

operating system for the host computer is 

Linux Ubuntu 18 whereas the guest machine 

runs a Windows 7 guest operating system. To 

build a convincing setting in the guest machine 

where the samples were run, several 

applications were installed, including Google 

Chrome, Mozilla Firefox, Adobe Acrobat 

Reader, and Microsoft Office. Additionally, 

some files, such as MS Word documents, PPT, 

Excel, PDF, GIF, and JPG, were created in 

multiple places on the guest machine's local 

storage. The proposed methodologies, 

analysis, and findings were implemented using 

Python 3.6 modules (Njoroge, 2022). 

Before using Cuckoo Sandbox for the analysis, 

the researchers had to configure the virtual 

environment using VirtualBox. This was to 

ensure that the analysis can be carried out in a 

safe condition. The guest computer system that 

was installed in the VirtualBox runs Windows 

7 (Win7). After developing the Win7 guest 

VirtualBox, the researchers followed the steps 

in Table 3 to configure the network to allow 

the communication between the host machine 

(Cuckoo Sandbox) and the guest machine 

(Win7). Next, the researchers took a 

screenshot of the guest machine to allow us to 

reset it to this clean state after each sample 

analysis. Cuckoo Sandbox configurations were 

also changed as illustrated in Table 4  

In order to run the sample analysis in the 

Cuckoo Sandbox, the guest machine needs to 

be firstly started in a VirtualBox. Then we can 

start the Cuckoo Sandbox service, followed by 

the Cuckoo Web service. Once the analysis 

has been completed, a report would be 

generated. This report can be extracted by 

copying the report file from this location 

“/.cuckoo/storage/analyses/1/report/report.json

”. 
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Table 3: Configuration on Guest Machine 

Step Description 

1 Configured the Network Address Translation (NAT) Network 

2 Disabled the Dynamic Host Configuration Protocol (DHCP) 

3 Disabled the Host-only Ethernet Adapter 

4 Disabled the firewall in guest machine 

5 Lowered UAC (User Account Control) in guest machine 

6 Set static IPv4 in guest machine 

7 Installed Python 2.7.16 in guest machine 

8 Installed Pillow 

9 Copied agent.py from Cuckoo Sandbox into the guest machine 

10 Executed agent.py in guest machine 

 

Table 4: Cuckoo Sandbox Configuration 

Step Description 

1 Enabled .MongoDB in reporting.conf file 

2 Setup the guest profile to the guest‟s machine name, “Win7SP1x64”, in memory.conf 

file 

3 Setup same static IP in guest machine and screenshot the name created previously in 

virtualbox.conf file 

 

Data 

This report produced by the Cuckoo Sandbox 

contained important information about pre-

encryption APIs, that is, the entire API‟s 

before the call of any encryption function. 

However, before the extraction begins, the 

researcher had to make sure that the cde can 

rightly extract the needed information. To 

achieve this, the researchers first of all 

developed a code which was used to extract all 

the API‟s, and then compared the summary of 

the extracted API with „apistats‟  which could 

be found in the Cuckoo report. Once the 

researchers had verified that the code had 

gotten a similar result, we went ahead to check 

for the API with the keyword „crypt‟, as the 

stop point of extraction. Shown below in 

Algorithm 1 is the final pseudo code (Kok et 

al, 2020). 

// data extraction 

1. Open file 

2. While there is line 

3. Goto next line 

4. Search for “api” 

5. If found, get the next word 

6. If the word has “crypt”, then stop 

7. Else store word 

8. Else next 

9. End while 

10. Close file 

Algorithm 1: Data Extraction 

The data extraction algorithm above produced 

a „txt‟ file which had to be converted to a data 

format („csv‟ file) that can be later fed into the 

LA (Learning Algorithm). The „csv‟ file had 

about 235 columns. The first column 

registered the sample‟s name. The second 

column specified whether the sample was 

goodware (zero) or crypto ransomware (one). 

The third column would specify the sample‟s 

source. The fourth column onwards consisted 

of API‟s that were compiled after extracting 

all the APIs from all the samples; a total of 

232 APIs were found. Based on the data 

extracted above, the researchers produced 

three data-sets. The first data-set consisted of 

the full API‟s from all the samples. The 

second data-set consisted of ransomware 

found to have the encryption function on, and 

the pre-encryption API‟s were the only ones 

extracted. The third data-set was one from a 

previous research utilized in (Sgandurra, 

2016), for extracting data-set of API‟s that are 

related. All the data-sets contained similar 

„goodware‟ data that was extracted from 

(Sgandurra, 2016). 

Learning Algorithm (L) 

The Learning Algorithm (L) was a key 

component which could determine unknown 

and known ransomware attacks. The LA 

consisted of two steps: first step was a pre-

processing of data by discretization; and the 
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second step was to use Random Forest (RF) to 

train the prediction model.  

Random Forest was chosen for this study 

because it performs well, particularly for 

discrete datasets, and can also categorize a 

large amount of data with a low error rate. 

Moreover, since the algorithm chooses trees at 

random, over-fitting is avoided, and scaling is 

not required for Random Forest to train 

efficiently. According to Fawagreh et al. 

(2014), “Random Forest approach has proved 

its high accuracy and superiority.”   

In order to verify how effective the LA model 

is, the researchers had used all three data-sets 

in two different ratios of training and testing. 

At first, the ratio used was 80:20, whereby 

80% of data were used for the training and 

20% of data used for testing. The second ratio 

used was 70:30, where 70% of data was used 

for training and 30% of data were used for 

testing. Additionally, the researchers also 

carried out a 10-fold verification test. We had 

also carried out a test on only Random Forest 

with no discretisation pre-processing. Shown 

in Figure 2 below is the scenario utilized to 

analyze the Learning Algorithm. 

The metrics used for evaluation are True 

Positive Rate (TP Rate), False Positive Rate 

(FP Rate), F-measure, Recall, Precision-Recall 

Curve (PRC), Matthews Correlation 

Coefficient (MCC), Precision, and Receiver 

Operating Characteristics (ROC). The P Rate 

examined how well the Learning Algorithm 

model could correctly predict the positives, 

whereas the FP Rate evaluated how well the 

Learning Algorithm model incorrectly predicts 

positives. Precision evaluated hw true a 

positive prediction will be. Recall evaluated 

the correctness f the positive prediction. F-

measure calculated the balance between recall 

and precision.CC examined hw well the 

prediction of the Learning Algorithm model 

correlates t the actual result. The ROC is an 

area that is under the curve f FP Rate versus 

the TP Rate, whereas PRC is an area that is 

under the curve f Recall versus Precision. 

 

 
   Figure 2: Analysis of the learning algorithm model 

The Signature Repository 

Once a ransomware has been identified by the 

Learning Algorithm above, the file‟s signature 

and other key information are usually saved in 

a database of MySQL. The signatures of 

ransomware were produced by hashing the 

ransomware file with SHA-256, which 

produced a fixed length of 64-characters code. 

The Hashing method paved the way for a fast 

and easy matching of the content of the file. 

The technique could identify ransomware 

immediately and with no need to be examined 

by the Cuckoo Sandbox. In average, Cuckoo 

Sandbox takes approximately 1 min to analyze 

a file. 

Hence, the method was very accurate, 

considerably faster, and safer. Nevertheless, it 

made use of a signature repository to work, 

which can be attained by making use of the 

Learning Algorithm. The method is specific to 

the ransomware sample and also very rigid - 

any slightest changes would make the method 

not to be effective again. 
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Shown in Fig. 3 is the MySQL database design 

for the Signature Repository. Whenever the 

Learning Algorithm identifies a file to be 

ransomware, the file would be quarantined, 

and key data will be saved in the two tables in 

the database; specifically tables Repeat and 

Sample. If the ransomware was detected by the 

Learning Algorithm, this signified that it was 

the very first time that this ransomware had 

attacked the victim. 

The table called Sample has eight fields: first 

field was Hash-Value which has the file‟s hash 

code. File-Name field saved the file‟s original 

name. The Attack field stored the n-times that 

the ransomware has attempted to attack the 

victim. Date and Time fields saved the date 

and time of the very first attack by the 

ransomware. The Size field stored the size of 

the file in MB (megabytes). The Created field 

stored the developer of the file. And lastly, 

Location field stored the location of the 

quarantined file which had its extension 

removed to make it not to be active again. 

Whenever the same ransomware attacks the 

victim for the second time, the signature 

matching method will detect it. If this happens, 

information of the second attack would be 

stored in the table Repeat. 

Additionally, Attacks field in table Sample will 

add one value and the file will be removed 

(Kok et al, 2020). 

 
  Figure 3: Signature repository data structure 

RESULTS 

PEDLA detection model has been designed in 

four stages, namely, features extraction, 

features selection, training/testing and 

prediction. 

 

Features Extraction 

The crypto-ransomware and benign samples 

are introduced one by one into the host 

machine's cuckoo sandbox instance. The 

cuckoo agent runs the binary files provided 

and captures the attack's features.  

 
Figure 4: Cuckoo Sandbox dashboard 

 
The activity report in JSON format for each 

file is stored in the sample's own trace-file. 

The API list and API sequences, which are 

required for the detection model, are then 

retrieved from the activity reports. 

Features Selection  
Rocchio relevance feedback with TF-IDF 

generated the pre-encryption border vector, as 

described in section 3.4.1 of the methodology. 

This procedure resulted in the definition of the 
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pre-encryption border vector, as seen in Table 

4.2. Every API signifies a border vector entry. 

Each entry‟s weight is also indicated as 

determined by equation (1).  

f = iitial +  (relevat dj - irrelevat dj) - - - - - (1) 

Whereby 𝑓 stands for the feedback-vector; Initial represents the original-vector; Σrelevat 𝑑𝑗 stands for 

the relevant-group, and Σirrelevat 𝑑𝑗 is the irrelevant-group. 

 

Table 5: The pre-encryption border vector 

API Weight (feature importance) 

Cryptencrypt 0.896 

Cryptdecrypt 0.821 

Cryptacquirecontexta 0.812 

Cryptacquirecontextw 0.779 

Cryptunprotectdata 0.723 

Cryptcreatehash 0.604 

Crypthashdata 0.593 

CryptgenKey 0.581 

CryptexportKey 0.556 

Encryptmessage 0.524 

Cryptdecodeobjectx 0.509 

CryptGetObjectUrl 0.503 

CryptReleaseContext 0.499 

CryptGetHashParam 0.474 

CertGetNameStringW 0.476 

Certcontrolstore 0.401 

Certopenstore 0.401 

Ntcreateprocessex 0.379 

Removedirectorya 0.347 

Ntdeletefile 0.343 

NtdeletevalueKey 0.303 

Rtlcompressbuffer 0.297 

Internetgetconnectedstate 0.290 

Ntqueryfullattributesfile 0.289 

Openservicea 0.273 

  
The variables considered to be significant were:  

API calls usage: The most prevalent APIs that were invoked by the ransomware. Table 6 shows the 

names of the common APIs being called.  

 

Table 6: Names of cryptoAPI‟s captured 

CryptUnprotectData  CryptGenKey  CryptEncrypt  

CryptDecrypt  EncryptMessage  CryptExportKey  

CryptDecodeObjectEX  CryptReleaseContext  CryptHashData  

CryptCreateHash  CryptAcquireContextA  CryptGetHashParam  

CertGetNameStringW  CryptAcquireContextW  CryptGetObjectUrl  

 
API calls input arguments: The APIs that 

accept cryptography related APIs and/or 

functions as parameters. They indicate the 

file's precise behaviour.  

Among them are, CertGetNameStringW, 

Certcontrolstore, Certopenstore, 

Ntcreateprocessex, Removedirectorya, 

Ntdeletefile, and Ntdeletevaluekey  
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API calls frequency: The APIs that invoke 

excessive and redundant cryptography related 

APIs. The weights and rank for the API 

occurrences are shown in table 5.  

Table 5 demonstrates that the cryptoAPIs that 

are explicit were scored higher than other APIs 

related to cryptography. This means that the 

proposed method was effective in identifying 

the cryptograph-related APIs more precisely 

among all APIs included in the InitialAt 

subset. 

Training and Testing 

The random forest machine learning algorithm 

is used to train the model. However, four more 

learning algorithms were also trained for 

comparison purposes. They include Support 

Vector Machines (SVM), K-Nearest 

Neighbour (KNN), Multi-Layer Perceptron 

(MLP), and AdaBoost.  

The effectiveness of the proposed model was 

assessed using several performance evaluation 

metrics including accuracy, f-score, recall, 

precision, false positive rate (FPR), false 

negative rate (FNR), ROC-AUC and cross-

validation. We tested PEDLA against other 

machine learning algorithms used in malware 

classification and also conducted a 

comparative analysis with models presented 

by related works.  

The first comparison is between PEDLA and 

four different learning algorithms as shown in 

table 7. According to the findings, the model 

attained a detection accuracy of 98.6%, 

Precision of 98.3%, recall of 99.1%, F score of 

99.3% and a ROC-AUC of 99.1%.  

Accuracy represents the ratio of all correct 

predictions. A higher precision means the 

lower the number of false positive errors 

committed by the classifier. The higher the 

recall value, the fewer cases misclassified as 

negative. A high ROC-AUC value indicates 

that the model can differentiate between 

negative and positive occurrences well.  

Table 7: Experiment results using different classifiers  

Metric  PEDLA  SVM  AdaBoost  KNN  MLP  

Accuracy  0.986  0.915  0.975  0.978  0.935  

F1-score  0.993  0.968  0.988  0.989  0.977  

Precision  0.983  0.899  0.969  0.973  0.925  

Recall  0.991  0.993  0.967  0.979  0.998  

ROC-AUC  0.991  0.935  0.959  0.961  0.942  

 

The highest accuracy on unseen test-set 

within the first 20 seconds of execution is 

shown in Table 8, along with the related 

false positive rate (FPR) and false negative 

rate (FNR). The highest accuracy of 98.6% 

was achieved in the fifth second of 

execution. However, as shown in figure 5, 

performance is consistently high (greater 

than 97%) even in the first few seconds. 

The model's sustained stability at various 

time intervals is an indication that it can 

predict the threat's appearance earliest 

possible. 

 

 
Figure 5: PEDLA performance at varying time stamps 
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Table 8: The highest accuracy on unseen test set 

Classifier Accuracy (%) Time (s) FPR (%) FNR (%) 

PEDLA 98.6 5 1.9 2.7 

SVM 91.5 10 3.4 5.1 

AdaBoost 97.5 8 4.7 7.2 

KNN 97.8 4 1.9 3.2 

MLP 93.5 14 3.9 5.5 

 

A low FPR indicates that the model is less prone to generating false alarms, while a low FNR 

indicates that it is less likely to predict a negative class wrongly.  

The highest average accuracy during 10-fold cross validation on the training-set within the first 20 

seconds of execution is shown in Table 9, along with the related false positive rate (FPR) and false 

negative rate (FNR). 

Table 9: Highest average accuracy during 10-fold cross validation 

Classifier Accuracy (%) Time (s) FPR (%) FNR (%) 

PEDLA 98.4 4 2.3 2.1 

SVM 90.1 10 4.5 3.6 

AdaBoost 95.6 4 6.7 5.2 

KNN 97.1 3 6.4 5.7 

MLP 92.9 13 7.2 5.8 

The researchers also conducted a comparative analysis with few models presented by related works. 

This is shown in Table 10 and Figure 6.  

Table 10: Comparison of detection results with related works 

Technique Accuracy (%) Recall 

(%) 

F-Score 

(%) 

Precision 

(%) 

FNR (%) FPR (%) 

PEDLA 98.9 99.1 99.3 98.3 2.6 1.8 

Rhode et al 

(2021) 

96.1 - - - 4.7 3.1 

Sgandurra et 

al (2016) 

97.9 96.3 - - 2.3 1.6 

Scaife et al 

(2016) 

93.0 - - - 6.0 - 

Homayoun 

et al (2017) 

98.3 98.0 98.0 - - 0.9 

 

 
Figure 6: Comparison of detection accuracy 
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The detection accuracy is the proportion of all 

correct predictions. Accuracy, however, isn't 

necessarily a good indicator of a model's 

ability to make correct predictions. Despite 

being a useful assessment metric, it may not be 

adequate owing to the nature of the dataset. If 

a dataset is imbalanced, for instance, there is a 

bias in favour of the largest represented group. 

To address this issue, other performance 

metrics including F-score, recall, precision, 

FPR and FNR were used in this study.  

Prediction 

The prediction capability in our early detection 

of crypto-ransomware model is explained by 

the good results produced. It can be shown 

from the results that the model achieved a 

detection accuracy of 98.6%, F score of 

99.3%, ROC-AUC of 99.1%, Precision of 

98.3% and a recall of 99.1%. 

DISCUSSION OF RESULTS 

This research proposed the idea of early 

crypto-ransomware detection depending on 

dynamic pre-encryption phase boundaries. The 

PEDLA was proposed and developed to 

dynamically define the pre-encryption stage 

border in the lifecycle of crypto-ransomware 

and extract the features before encryption that 

were used in training the detection model. In 

contrast to fixed time-based thresholding, 

PEDLA uses a dynamic thresholding 

approach, which entails creating a border 

vector prior to encryption that contains the 

cryptography-related APIs being called. This 

vector's entries were selected based on their 

computed weights utilizing the proposed 

approach.  

The comparative findings in Figure 6 show 

that our approach was more effective in 

identifying the pre-encryption border than the 

fixed-time thresholding method used in related 

works. This is due to the dependence on 

cryptography-related APIs to monitor the start 

of encryption for every sample, irrespective of 

how long it took for encryption to begin. Table 

7 experimental findings show that the 

cryptoAPIs that are explicit were scored higher 

than other APIs related to cryptography. This 

means that the proposed method was effective 

in identifying the cryptography-related APIs 

more precisely among all APIs included in the 

Initial subset.  

Table 10 and Figure 6 also demonstrate how 

well the model performed compared to the 

related works in Scaife et al. (2016), 

Sgandurra et al. (2016), Homayoun et al. 

(2017) and Rhode et al. (2021). Accordingly, 

the PEDLA dynamic thresholding proved 

more successful than other thresholding 

strategies in capturing the behavioural 

component of crypto-ransomware attacks at 

earlier stages. This is due to the PEDLA's 

ability to incorporate more data than other 

strategies since it monitors the onset of 

encryption for each instance separately. It 

utilizes the supplementary traits that certain 

ransomware samples in the dataset may have, 

allowing it to collect more pre-encryption data. 

Despite the fact that some ransomware 

instances begin encryption pretty fast, there 

are certain cases when the encryption begins 

late. As a result, dynamic thresholding 

compensates for a lack of data in samples that 

begin encryption quite fast with data gathered 

by samples that begin encryption late. 

CONCLUSION 

The goal of this research was to create a 

scheme for detecting crypto-ransomware 

attacks during the pre-encryption stage. The 

solution was effective in defining the crypto-

ransomware lifecycle's pre-encryption borders, 

extracting the distinctive features that depict 

the attack patterns in this stage, and 

incorporating the features into the creation of 

the crypto-ransomware detection model. 

Crypto ransomware is a particularly dangerous 

kind of malware. It is distinguished by its 

irreversible effect even after detection and 

removal. As such, early detection is critical to 

safeguarding user data and files from being 

held for ransom. However, the idea of early 

crypto-ransomware detection is constrained in 

how it determines the pre-encryption border. 

The existing studies either use a set threshold 

to define the pre-encryption border or utilize 

the entire data obtained during the attack 

which is ineffective in early detection.  

In this research work, an early detection model 

for crypto ransomware was proposed. The 

model focuses on API calls and functions to 

detect malware encryption operation. APIs 

allow programs to interact and send 

information to one another; once we know 

which APIs are being called, the machine 

learning model can identify and halt the 

process. This gives us control and the ability to 

examine requesting application to determine 

whether it is a ransomware and then terminate 

it before it encrypts any files.  

The model creates the pre-encryption border 

vector, which comprises all cryptography-
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related APIs responsible for determining the 

pre-encryption stage border during the crypto 

ransomware lifecycle. The model proved more 

effective than previous works in defining the 

pre-encryption stage border of crypto 

ransomware attacks.  

Four classifiers including Support Vector 

Machines (SVM), K-Nearest Neighbour 

(KNN), Multi-Layer Perception (MLP), and 

AdaBoost, were utilized to evaluate the 

model's classification abilities. Furthermore, a 

comparison was done between the related 

works and our model. The findings show that 

PEDLA performed better across most 

calculated metrics, including accuracy, 

precision and recall. PEDLA also has a low 

FPR of 1.9%, indicating that it is highly 

unlikely to misclassify a benign program. This 

demonstrates the effectiveness of the proposed 

approach in precisely defining and extracting 

the features most closely related with the pre-

encryption stage, and then using these features 

to build the detection model. Consequently, we 

can conclude that the proposed scheme may 

well be used for early detection of crypto 

ransomware attacks during the pre-encryption 

stage. 

FUTURE WORK 

PEDLA usage has its limitations. One of the 

notable limitations is its dependence on use of 

Windows API, which provided more efficient 

encryption process by crypto ransomware. 

PEDLA does not have the ability to detect 

crypto ransomware that uses its own native 

encryption code. Hence, PEDLA should be 

utilized as a supplement detection system 

rather than the only crypto ransomware 

detection system. More so, PEDLA was 

designed to detect only one type of 

ransomware, whereas there are numerous 

kinds of malware in the wild.  

The results coming from PEDLA are very 

good but it requires further improvements for 

it to be used by the public. This is due to the 

fact that the configuration and installation of 

supporting applications like MySQL and 

Cuckoo Sandbox can be challenging for many 

people. Hence, for future work, PEDLA 

should be built such that it can be implemented 

as a standalone application without the need 

for a separate configuration of supporting 

applications. 
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