
AJBAR Vol. 3(4), August 2024: 96-111, ISSN: 2811-2881

96

 Arid Zone Journal of Basic and Applied Research

Faculty of Science, Borno State University

Maiduguri, Nigeria

Journal homepage: https://www.azjournalbar.com

Research Article

PEDLA Detection Model for Crypto-Ransomware
Oluwasogo Adekunle Okunade

1
, Raymond Ternenge Igbudu

1
 and Emmanuel Gbenga Dada

2

1
Department of Computer Science, Faculty of Computing, National Open University of Nigeria, Abuja,

Nigeria
2
Department of Computer Science, Faculty of Physical Sciences, University of Maiduguri, Nigeria

*Corresponding author’s Email: igbuduraymond@gmail.com, doi.org/10.55639/607.05040303

ARTICLE INFO:

Keywords:
Crypto-ransomware,

Encryption,

Early detection,

Pre-encryption stage,

 Signature-based

ABSTRACT

Crypto ransomware is a challenging cybersecurity threat that encrypts the files

of the victim and demands a ransom in exchange for the decryption key.

Traditional signature-based protection methods, such as antivirus and anti-

malware, have proven in-effective at preventing crypto-ransomware attacks;

therefore the production of ransomware is on the rise. Existing methods for

early detection of crypto-ransomware attacks during the pre-encryption phase

before encryption happens rely on a timing thresholding methodology to set the

border of the pre-encryption stage. However, the fixed time threshold strategy,

suggests that the samples begin encryption at the exact moment. This is not

always the case since timing varies between crypto-ransomware families as a

result of the obfuscation techniques used to evade detection. This research

work therefore, proposed the creation of a Pre-Encryption Detection-Learning

Algorithm (PEDLA). PEDLA monitors the pre-encryption stage for every case

separately relying on the initial appearance of any API‟s related to

cryptography to establish the pre-encryption stage boundary, whereby features

are extracted and used in training a prediction model using the Random Forest

machine learning algorithm. The sample data was obtained from widely used

ransomware repositories such as VirusShare, Virus total and kaggle.com. The

model achieved a detection accuracy of 98.6% with False Positive Rate (FPR)

of 1.9%. Four classifiers including Support Vector Machines (SVM), K-

Nearest Neighbour (KNN), Multi-Layer Perceptron (MLP), and AdaBoost,

were used to evaluate the model's classification abilities. Furthermore, a

comparison was done between the related works and PEDLA. The findings

show that PEDLA performed better across most calculated metrics, such as

accuracy, precision and recall.

.

Corresponding author: Raymond Ternenge Igbudu, Email: igbuduraymond@gmail.com

Department of Computer Science, National Open University of Nigeria, Abuja, Nigeria

O. A. Okunade et al. ISSN: 2811-2881

97

INTRODUCTION

Cyber security is the practice of safeguarding

data, networks, and devices from cyber-

attacks. These cyber-attacks are normally

launched with the intent to alter, destroy, or

access the data of the user or produce intrusion

in the users‟ business processes. The

implementation of cyber-security has become

critical and demanding because there are very

few individuals against many computing

devices. These cyber attackers are typically

evil-minded people who are usually interested

in altering, destroying, and/or accessing the

data and reputation of the user. Cyber-security

would not be possible if attention is not given

to malware attacks (Tariq, 2020). The creation

of intrusion detection systems and anti-viruses

has prompted cyber-criminals to also create

very powerful and advanced malware which

can evolve; causing some serious infections

and can even metamorphose (Gazet, 2010).

Malware is a program developed to cause

damage to the network of a computer, client, a

computer, server and/or some other resources

of the computer user. This malware usually

disables and causes damage to computer

resources without the knowledge of the user

and contravenes the rights of the user.

Malware has several forms such as Viruses,

Trojan, Rootkit, Worms, crypto ransomware,

and so on.

Crypto-ransomware is one of today's most

dangerous types of malware. Once infected,

the malware encrypts the victim‟s data and

blocks access until ransom is paid, resulting in

multi-million dollar cyber-extortion each year.

This type of malware has caught the interest of

cybercriminals due to numerous success

stories with global ramifications, such as

cryptowall, Wannacry, and NotPetya (Oz et

al., 2021). Because of the huge level of

interest, plenty of other new crypto-

ransomware have been developed, as well as

improving existing ransomware with new

variants.

Crypto-ransomware is distinguished by its

irreversible effect even after detection and

removal. As such, early detection is critical to

safeguarding user data and files from being

held for ransom. Cybercriminals have refined

crypto-ransomware attack aspects such as

greater encryption algorithms, worm-like

capabilities, pseudo-anonymous payment

methods, and the availability of Ransomware-

as-a-Service (RaaS) on the dark-web, which

facilitates creation of new ransomware

variants (Oz et al., 2021). As a result, crypto-

ransomware attacks are on the rise. However,

conventional malware detection methods are

ineffective for detecting crypto-ransomware

(Al-Rimy et al., 2021).

Many commercial and open-source anti-

crypto-ransomware solutions rely on

signature-based detection methods, which are

quick and accurate for detecting known

malware but far too restrictive for detecting

zero-day attacks (Kok et al., 2020). The

signature repositories must be updated on a

regular basis, and due to cybercriminals' great

interest in ransomware, new variants of

ransomware that can bypass antiviruses

continue to emerge at a rapid pace. Despite

continuous improvements or updates, malware

authors maintain a one-step advantage because

new variants are produced quicker than new

signatures can be generated, tested, and added

to malicious signature repositories (Kok et al.,

2020).

Detection methods capable of dealing with

zero-day crypto-ransomware attacks strive to

detect the infection based on broader features

such as ransomware-specific operations rather

than just file signatures alone. In this regard,

several strategies for detecting crypto-

ransomware attacks have been proposed; they

can be classified as data-centric or process-

centric (Al-Rimy et al., 2021).

The data-centric solutions monitor the victim's

computer's digital assets and sound an alarm if

any suspicious changes are found (Al-Rimy et

al., 2021). They examine the file structure

changes to see whether they are suspicious.

This approach, however, cannot tell if the file

structure change was caused by a crypto-

ransomware attack or by benign application,

resulting in a high rate of false alarms (Al-

Rimy et al., 2021). Furthermore, the data-

centric method may not entirely guard against

ransomware attacks since it sacrifices a portion

of the files before detection (Scaife et al.,

2016). These files may be worth more to the

victim than the other data.

Process-centric solutions, on the other hand,

are classified into two groups. One, by

monitoring system activities such as, file

system access for example privilege elevation,

network activity, resource usage and

interactions with the operating system, and

triggering an alarm when particular

O. A. Okunade et al. ISSN: 2811-2881

98

encryption-related events occur (Kharaz et al.,

2016). However, relying on ad hoc incidents

for crypto-ransomware attack detection raises

the likelihood of false alerts because crypto-

ransomware is not always the cause; benign

applications can also cause them. (Al-Rimy et

al., 2021). Additionally, there is no assurance

that such ad hoc events will always occur prior

to encryption; they may occur after encryption

due to changes in attack techniques (Kharaz et

al., 2016). As a result, this strategy is

ineffective for early detection.

The second type of process-centric solutions

monitors the running process's behaviour and

gathers various forms of behavioural data

which are subsequently utilized to train

different machine learning classifiers. The key

obstacle with the existing methods for early

detection of crypto-ransomware is lack of

adequate data during the initial stages of an

attack, which limits the capacity of feature

extraction algorithms in early detection

solutions to discover attack features, resulting

in data loss, low detection accuracy, and a high

false-positive rate (Al-Rimy et al., 2020).

Furthermore, they adopt a set time-based

thresholding method to determine the pre-

encryption stage borders (Scaife et al. 2016:

Hwang et al. 2020).

However, the set-time thresholding strategy,

suggests that the samples begin encryption at

the exact moment. This is not always the case

since timing varies between crypto-

ransomware families as a result of the

obfuscation techniques used to evade detection

(Al-Rimy et al., 2020). As a result, this

strategy may miss the start of the encryption

operation, resulting in encryption of several

files before detection (Scaife et al., 2016).

Regardless of the efforts put forth, the existing

approaches, inevitably, have limitations.

Crypto-ransomware is still an intricate

problem that requires further study to improve

current detection methods. In light of this, this

work proposes development of a model

capable of detecting crypto-ransomware

during the pre-encryption stage, before

encryption happens.

Aslan (2020) explains malicious software

(malware) detection as the act f evaluating

the content of a program to find out if it is

malicious or benign. Generally, detection

methods are grouped into 3 kinds:

 Behavior-based: those that make use

of dynamic analysis,

 Signature-based: those that make use

of static analysis, and

 Hybrid: those that use both dynamic

and static analysis.

Signature-based detection techniques examine

the code of an application before it is

implemented to adjudge if it has the capability

of malicious action. If the static analysis

identifies any malicious code, then the

executable shall be halted from executing. The

signature analysis entails getting code string

patterns (known as signatures) from codes of

the target application and matching them to the

malicious code patterns database

(Nieuwenhuizean, 2019).

This technique is effective and quick in

identifying ransom-ware that is known. The

failure of signature-based method to identify

ransomware that is unknown is its main

shortcoming. A malicious executable code

could be detected only after it has been

confirmed as being malicious and included in

the database of malicious signatures

(Nieuwenhuizean, 2019). This definitely has

numerous resultant effects for the

effectiveness of static-based detection;

 Firstly, it is not effective against code

obfuscation; ransomware authors

make use of code-obfuscation

techniques so as to keep on changing

malware so that every variant appears

different from others in order to avoid

detection by the signature-based

methods.

 Secondly, the signature-based method

of detection is not effective against

ransom-ware that has short cycles of

development. his has become a

challenge for signature-based

detection systems because new

ransomware forms are developed

faster than new ransom-ware

signatures can be collected, tested and

included in the malware signature

repositories (Nieuwenhuizean, 2019).

 Thirdly, signature-based detection is

not effective in the face of targeted

ransomware. Making use of the RaaS

(Ransomware-as-a-Service) paradigm,

bots can change signatures in order to

target specific companies. This makes

it easy for the creation of a very

personalized ransomware variant with

O. A. Okunade et al. ISSN: 2811-2881

99

the capability of evading detection by

signature-based methods.

Various authors have put forward some static

analysis-based techniques for identifying

cryptographic ransomware attacks.

Zhang (2019) put forward a model for

transforming operation code (opcode)

sequences into N-gram sequences that were

then utilized for training the machine learning

model: the accuracy of the model was 91.43%.

In Baldwin (2018), Static analysis was utilized

to remove operation codes (opcodes) from

benign and malicious Portable Executable

files. Then, the characteristics of the extracted

opcode were used as input to Support Vector

Machine (SVM) machine learning classifier.

Here, the very best accuracy gotten from 5

cryptographic ransom-ware variants was

around 96.5%.

Alzahrani (2018) put forward a static-analysis

technique known as Ran-Droid. This approach

searches for a possibly suspicious information

in the application code which could be an

image, or a text. The main reason behind this

is that ransomware's major aim is to extort

monetary ransom from its victims. Because of

this, these ransomware variants need to have a

message of threat in its codes. The major

drawback of this technique is this; the message

of threat may be released after the data of the

victim has been encrypted as a payload.

To manage the drawbacks of signature-based

detection techniques, the methods of detection

with the capability of handling cryptographic

ransomware should have its focus more on

broader features like ransomware-specific

processes instead of file-signatures only.

A behavior-based method of detection

involves evaluating the behaviors and

interactions of a process against their

surroundings in realtime so as to identify

malicious intention. Every executable files are

normally taken to be unknowns and it is the

responsibility of the executable file to show it

is safe and it is not malicious. Maliciously

behaving operations will be detected and

quarantined (Nieuwenhuizean, 2019).

Behavior-based methods of detection are

categorically grouped as process-centric or

data-centric. The process-centric approach

offers two solutions. Firstly, by evaluating the

resources of a system like file system access

for instance, resource usage, network activity,

privilege elevation and communication with

OS. Amongst these, the cryptographic ransom-

ware system activity is differentiated by the

serious encryption of the data of the victim,

which results in a file system activity that is

unusual (haraz, 2016). Secondly, by

evaluating the behavior of a process that is

running, examining each line of code, and all

potential activities carried out by the code are

evaluated, such as having access into any

crucial files or files that are not relevant,

processes and internal services, and collecting

different kinds of behavioral data that are then

used to train various machine-learning

classifiers (l-Rimy, 2021).

The data-centric technique monitors the digital

assets of the victim‟s computer, and alerts the

user if any changes are found to be suspicious.

The data-centric technique also monitors

changes in file structures so as to know if they

behave suspiciously. The data-centric

techniques employ strategies such as file

entropy, decoy techniques, and contents

similarity measures. They do this to know

what is going on in the structure of the file

both before and after access (l-Rimy, 2021).

The main drawback of behavior-based method

of detection is that it is very difficult to

execute; and, dynamic analysis on many

dimensions causes delay that affects

performance negatively. Also, methods of

advanced code obfuscation make it impossible

to conduct proper ransom-ware examination.

Finally, the behavior of some ransomware

variants in virtual machines or sandboxes is

not proper.

Alzahrani (2018) proposed Unveil, which is a

dynamic analysis technique that runs

applications in a virtual environment and

examines the activities of file system and the

interactions of desktop for suspicious behavior

that may identify ransom-ware infections.

Alzahrani‟s Unveil had a rate of detection of

96.3%. However, Unveil could confuse heavy

activity of the file system as the presence of

ransom-ware.

Hwang (2020) propounded a mixed-detection

model for ransom-ware that is two-phase; the

Markov model, and a Random Forest (RF)

model. The authors tested Application

Programming Interface classification and

disclosed that it had a 97.3% accuracy and a

1.5% FNR with a 4.8% FPR.

Takeuchi (2018) presented a ransom-ware

detection technique based on SVM‟s, which

learn the ransom-ware Application

O. A. Okunade et al. ISSN: 2811-2881

100

Programming Interface calls as features,

giving way to the support vector machines to

identify ransom-ware that were previously

unknown. The authors used 276 malware

samples and 312 benign samples and got a rate

of detection of 97.48%.

Wecksten (2016) examined the behavior of 4

kinds of cryptographic ransom-ware in a

virtual-machine that was running the Win 7

operating system. These scientists discovered

that the executable, vssadmin.exe is so much

utilized in cryptographic ransom-ware attacks,

and they proposed that users should stop the

use of“vssadmin.exe” to avoid this cyber

attack.

The developers of Continella (2016) attempted

to find the Advanced Encryption Standard

(AES) key in process memory through the

interception of file access system calls. If the

original file is somehow already encrypted,

this technique gives room for its restoration.

Unfortunately, this technique works only with

ransom-ware that makes use of AES

symmetric encryption. This technique will fail

if the ransom-ware uses another encryption

technique. Ransom-ware with administrator

privileges can also uninstall this technique.

The hybrid system of ransom-ware detection

detects cryptographic ransom-ware by using a

combination of signature-based and behavior-

based detection approaches.

Subedi (2018) propounded a technique that is

integrated and is a combination of static

analysis and run-time analysis to connect code

segments with the dynamic behavior f

ransom-ware. These scientists developed

CRSTATIC, which is a reverse engineering-

based tool for analysis used for identifying

cryptographic ransom-ware.

Shaukat (2018) presented an (STL), Strong

Trap Layer, which combines static analysis

and dynamic analysis to produce a set of

attributes that makes use of machine-learning

strategies to depict the behavior of ransom-

ware. The rate of detection was reported as

98% when making use of the

Gradientreeoostinglgorithm (GTBA).

Other authors proposed to fight the

cryptographic ransom-ware threat by the use

of key escrow. This key escrow is a technique

of saving keys and other cryptographic info for

future use. Using the ransom-ware viewpoint,

key escrow explores to gather secret keys and

other materials while the ransom-ware

encrypts files such that the files can be gotten

back after the attack. This technique is

predicated on the basis that should the

encryption keys be recovered after the attack,

the ransom-ware-encrypted files could be

retrieved.

Kolodenker (2017) introduced PayBreak,

which is a crypto-API monitoring strategy that

excerpts cryptographic variables and

encryption keys, and saves the keys inside a

key vault such that when there is a ransom-

ware attack, the encrypted files could be

decrypted with the use of brute-force

techniques, making use of the encryption keys

and other cryptographic variables gotten at the

key vault. According to the creators, ransom-

ware can evade PayBreak by using third-party

libraries and code obfuscation strategies

(olodenker, 2017).

METHODOLOGY
Shown in Figure 1, is a research framework

designed for this research work designed to

meet all the objectives of the research. There

shall be five blocks of research activity in this

work, and they are Research Samples,

Database, Cuckoo Sandbox, Machine

Learning, and Data. An explanation of each of

the blocks is detailed below (Kok et al, 2020)

O. A. Okunade et al. ISSN: 2811-2881

101

Figure 1: PEDLA Model Framework

Research Samples

The researchers started off by obtaining

samples (ransom-ware and good-ware) from

VirusShare (VS). This ransomware data-set

was composed of 357 samples. These samples

were grouped based on their families and

defined as cryptographic malware by many of

the anti-virus programs present on Virus-total.

Those research samples stand for various

families such as Petya, CryptoWall, Cerber,

WannaCry, and TeslaCrypt. The goodware

data-set had 75 samples collected from

kaggle.com, which is a data science and

machine learning online community platform.

VirusShare is a malicious software repository

which shares malware collections with

forensic analysts, incident responders, security

researchers, and those who are curious

morbidly. VS had 68,671,265 malware

samples as at the time this research work was

conducted (Kok et al, 2020).

Table 1: Dataset

S/No. Crypto-ransomware Family Number of Samples

1 Petya 35

2 CryptoWall 28

3 Cerber 57

4 WannaCry 40

5 TeslaCrypt 31

6 CryptoLocker 48

7 Cyrar 67

8 Satana 51

Through VS the researcher successfully

obtained 357 new cryptgraphic ransom-ware

samples.

Fr pre-encryption sample selection, the

researcher passed all the samples collected in

the Cuckoo Sandbox. This sandbox produced a

record that stated the sequence f all API‟s

(Application Program Interface) that were

called by the sample. Those samples that had

the „crypt‟ keyword in there API sequence

were chosen. The API‟s with the „crypt‟

keyword were fund to carry out encryption

function as denoted in Table 2.

O. A. Okunade et al. ISSN: 2811-2881

102

Table 2: API‟s with the „crypt‟ keyword

S/No. Application Program Interface

(API)

DESCRIPTION

1 CryptHashData To append data to a hash object that allowed long or

discontinuous data streams

2 CryptGenKey To generate a random encryption key in symmetrical

encryption or public/private key pair in asymmetrical

encryption

3 CryptCreateHash To start hashing data stream that allowed communication

in a secured session

4 CryptEncrypt To perform encryption function using encryption key as

specified by CSP using hkey parameter

5 CryptDecodeObjectEx To decode according to type of structure as specified by

ipszstructType parameter

6 CryptExportKey To export an encryption key in symmetrical encryption

or a pair of encryption keys in asymmetrical encryption

from specific CSP securely

7 CryptAcquireContextW

8 CryptAcquireContextA To obtain key container from a specific cryptographic

service (CSP) that was called by CryptoAPI

The Cuckoo Sandbx

The Cuckoo Sandbox is a malicious software

(malware) analysis system which is used to

check a program‟s behavior by running the

program in a sandbox. As soon as the program

has been deposited in the sandbox, Cuckoo

Sandbox tracks all the Application Program

Interface (API) calls made by the prgram.

hereafter, the Cuckoo generates a report that

has a sequence of all the API‟s that are being

called (Kok et al, 2020).

The Environment Setup

The dynamic analysis of the crypto

ransomware was carried out in a controlled

environment built on a computer with Core i5

processor @ 2.3 GHZ and 8 GB RAM. The

operating system for the host computer is

Linux Ubuntu 18 whereas the guest machine

runs a Windows 7 guest operating system. To

build a convincing setting in the guest machine

where the samples were run, several

applications were installed, including Google

Chrome, Mozilla Firefox, Adobe Acrobat

Reader, and Microsoft Office. Additionally,

some files, such as MS Word documents, PPT,

Excel, PDF, GIF, and JPG, were created in

multiple places on the guest machine's local

storage. The proposed methodologies,

analysis, and findings were implemented using

Python 3.6 modules (Njoroge, 2022).

Before using Cuckoo Sandbox for the analysis,

the researchers had to configure the virtual

environment using VirtualBox. This was to

ensure that the analysis can be carried out in a

safe condition. The guest computer system that

was installed in the VirtualBox runs Windows

7 (Win7). After developing the Win7 guest

VirtualBox, the researchers followed the steps

in Table 3 to configure the network to allow

the communication between the host machine

(Cuckoo Sandbox) and the guest machine

(Win7). Next, the researchers took a

screenshot of the guest machine to allow us to

reset it to this clean state after each sample

analysis. Cuckoo Sandbox configurations were

also changed as illustrated in Table 4

In order to run the sample analysis in the

Cuckoo Sandbox, the guest machine needs to

be firstly started in a VirtualBox. Then we can

start the Cuckoo Sandbox service, followed by

the Cuckoo Web service. Once the analysis

has been completed, a report would be

generated. This report can be extracted by

copying the report file from this location

“/.cuckoo/storage/analyses/1/report/report.json

”.

O. A. Okunade et al. ISSN: 2811-2881

103

Table 3: Configuration on Guest Machine

Step Description

1 Configured the Network Address Translation (NAT) Network

2 Disabled the Dynamic Host Configuration Protocol (DHCP)

3 Disabled the Host-only Ethernet Adapter

4 Disabled the firewall in guest machine

5 Lowered UAC (User Account Control) in guest machine

6 Set static IPv4 in guest machine

7 Installed Python 2.7.16 in guest machine

8 Installed Pillow

9 Copied agent.py from Cuckoo Sandbox into the guest machine

10 Executed agent.py in guest machine

Table 4: Cuckoo Sandbox Configuration

Step Description

1 Enabled .MongoDB in reporting.conf file

2 Setup the guest profile to the guest‟s machine name, “Win7SP1x64”, in memory.conf

file

3 Setup same static IP in guest machine and screenshot the name created previously in

virtualbox.conf file

Data

This report produced by the Cuckoo Sandbox

contained important information about pre-

encryption APIs, that is, the entire API‟s

before the call of any encryption function.

However, before the extraction begins, the

researcher had to make sure that the cde can

rightly extract the needed information. To

achieve this, the researchers first of all

developed a code which was used to extract all

the API‟s, and then compared the summary of

the extracted API with „apistats‟ which could

be found in the Cuckoo report. Once the

researchers had verified that the code had

gotten a similar result, we went ahead to check

for the API with the keyword „crypt‟, as the

stop point of extraction. Shown below in

Algorithm 1 is the final pseudo code (Kok et

al, 2020).

// data extraction

1. Open file

2. While there is line

3. Goto next line

4. Search for “api”

5. If found, get the next word

6. If the word has “crypt”, then stop

7. Else store word

8. Else next

9. End while

10. Close file

Algorithm 1: Data Extraction

The data extraction algorithm above produced

a „txt‟ file which had to be converted to a data

format („csv‟ file) that can be later fed into the

LA (Learning Algorithm). The „csv‟ file had

about 235 columns. The first column

registered the sample‟s name. The second

column specified whether the sample was

goodware (zero) or crypto ransomware (one).

The third column would specify the sample‟s

source. The fourth column onwards consisted

of API‟s that were compiled after extracting

all the APIs from all the samples; a total of

232 APIs were found. Based on the data

extracted above, the researchers produced

three data-sets. The first data-set consisted of

the full API‟s from all the samples. The

second data-set consisted of ransomware

found to have the encryption function on, and

the pre-encryption API‟s were the only ones

extracted. The third data-set was one from a

previous research utilized in (Sgandurra,

2016), for extracting data-set of API‟s that are

related. All the data-sets contained similar

„goodware‟ data that was extracted from

(Sgandurra, 2016).

Learning Algorithm (L)

The Learning Algorithm (L) was a key

component which could determine unknown

and known ransomware attacks. The LA

consisted of two steps: first step was a pre-

processing of data by discretization; and the

O. A. Okunade et al. ISSN: 2811-2881

104

second step was to use Random Forest (RF) to

train the prediction model.

Random Forest was chosen for this study

because it performs well, particularly for

discrete datasets, and can also categorize a

large amount of data with a low error rate.

Moreover, since the algorithm chooses trees at

random, over-fitting is avoided, and scaling is

not required for Random Forest to train

efficiently. According to Fawagreh et al.

(2014), “Random Forest approach has proved

its high accuracy and superiority.”

In order to verify how effective the LA model

is, the researchers had used all three data-sets

in two different ratios of training and testing.

At first, the ratio used was 80:20, whereby

80% of data were used for the training and

20% of data used for testing. The second ratio

used was 70:30, where 70% of data was used

for training and 30% of data were used for

testing. Additionally, the researchers also

carried out a 10-fold verification test. We had

also carried out a test on only Random Forest

with no discretisation pre-processing. Shown

in Figure 2 below is the scenario utilized to

analyze the Learning Algorithm.

The metrics used for evaluation are True

Positive Rate (TP Rate), False Positive Rate

(FP Rate), F-measure, Recall, Precision-Recall

Curve (PRC), Matthews Correlation

Coefficient (MCC), Precision, and Receiver

Operating Characteristics (ROC). The P Rate

examined how well the Learning Algorithm

model could correctly predict the positives,

whereas the FP Rate evaluated how well the

Learning Algorithm model incorrectly predicts

positives. Precision evaluated hw true a

positive prediction will be. Recall evaluated

the correctness f the positive prediction. F-

measure calculated the balance between recall

and precision.CC examined hw well the

prediction of the Learning Algorithm model

correlates t the actual result. The ROC is an

area that is under the curve f FP Rate versus

the TP Rate, whereas PRC is an area that is

under the curve f Recall versus Precision.

 Figure 2: Analysis of the learning algorithm model

The Signature Repository

Once a ransomware has been identified by the

Learning Algorithm above, the file‟s signature

and other key information are usually saved in

a database of MySQL. The signatures of

ransomware were produced by hashing the

ransomware file with SHA-256, which

produced a fixed length of 64-characters code.

The Hashing method paved the way for a fast

and easy matching of the content of the file.

The technique could identify ransomware

immediately and with no need to be examined

by the Cuckoo Sandbox. In average, Cuckoo

Sandbox takes approximately 1 min to analyze

a file.

Hence, the method was very accurate,

considerably faster, and safer. Nevertheless, it

made use of a signature repository to work,

which can be attained by making use of the

Learning Algorithm. The method is specific to

the ransomware sample and also very rigid -

any slightest changes would make the method

not to be effective again.

O. A. Okunade et al. ISSN: 2811-2881

105

Shown in Fig. 3 is the MySQL database design

for the Signature Repository. Whenever the

Learning Algorithm identifies a file to be

ransomware, the file would be quarantined,

and key data will be saved in the two tables in

the database; specifically tables Repeat and

Sample. If the ransomware was detected by the

Learning Algorithm, this signified that it was

the very first time that this ransomware had

attacked the victim.

The table called Sample has eight fields: first

field was Hash-Value which has the file‟s hash

code. File-Name field saved the file‟s original

name. The Attack field stored the n-times that

the ransomware has attempted to attack the

victim. Date and Time fields saved the date

and time of the very first attack by the

ransomware. The Size field stored the size of

the file in MB (megabytes). The Created field

stored the developer of the file. And lastly,

Location field stored the location of the

quarantined file which had its extension

removed to make it not to be active again.

Whenever the same ransomware attacks the

victim for the second time, the signature

matching method will detect it. If this happens,

information of the second attack would be

stored in the table Repeat.

Additionally, Attacks field in table Sample will

add one value and the file will be removed

(Kok et al, 2020).

 Figure 3: Signature repository data structure

RESULTS

PEDLA detection model has been designed in

four stages, namely, features extraction,

features selection, training/testing and

prediction.

Features Extraction

The crypto-ransomware and benign samples

are introduced one by one into the host

machine's cuckoo sandbox instance. The

cuckoo agent runs the binary files provided

and captures the attack's features.

Figure 4: Cuckoo Sandbox dashboard

The activity report in JSON format for each

file is stored in the sample's own trace-file.

The API list and API sequences, which are

required for the detection model, are then

retrieved from the activity reports.

Features Selection
Rocchio relevance feedback with TF-IDF

generated the pre-encryption border vector, as

described in section 3.4.1 of the methodology.

This procedure resulted in the definition of the

O. A. Okunade et al. ISSN: 2811-2881

106

pre-encryption border vector, as seen in Table

4.2. Every API signifies a border vector entry.

Each entry‟s weight is also indicated as

determined by equation (1).

f = iitial + (relevat dj - irrelevat dj) - - - - - (1)

Whereby 𝑓 stands for the feedback-vector; Initial represents the original-vector; Σrelevat 𝑑𝑗 stands for

the relevant-group, and Σirrelevat 𝑑𝑗 is the irrelevant-group.

Table 5: The pre-encryption border vector

API Weight (feature importance)

Cryptencrypt 0.896

Cryptdecrypt 0.821

Cryptacquirecontexta 0.812

Cryptacquirecontextw 0.779

Cryptunprotectdata 0.723

Cryptcreatehash 0.604

Crypthashdata 0.593

CryptgenKey 0.581

CryptexportKey 0.556

Encryptmessage 0.524

Cryptdecodeobjectx 0.509

CryptGetObjectUrl 0.503

CryptReleaseContext 0.499

CryptGetHashParam 0.474

CertGetNameStringW 0.476

Certcontrolstore 0.401

Certopenstore 0.401

Ntcreateprocessex 0.379

Removedirectorya 0.347

Ntdeletefile 0.343

NtdeletevalueKey 0.303

Rtlcompressbuffer 0.297

Internetgetconnectedstate 0.290

Ntqueryfullattributesfile 0.289

Openservicea 0.273

The variables considered to be significant were:

API calls usage: The most prevalent APIs that were invoked by the ransomware. Table 6 shows the

names of the common APIs being called.

Table 6: Names of cryptoAPI‟s captured

CryptUnprotectData CryptGenKey CryptEncrypt

CryptDecrypt EncryptMessage CryptExportKey

CryptDecodeObjectEX CryptReleaseContext CryptHashData

CryptCreateHash CryptAcquireContextA CryptGetHashParam

CertGetNameStringW CryptAcquireContextW CryptGetObjectUrl

API calls input arguments: The APIs that

accept cryptography related APIs and/or

functions as parameters. They indicate the

file's precise behaviour.

Among them are, CertGetNameStringW,

Certcontrolstore, Certopenstore,

Ntcreateprocessex, Removedirectorya,

Ntdeletefile, and Ntdeletevaluekey

O. A. Okunade et al. ISSN: 2811-2881

107

API calls frequency: The APIs that invoke

excessive and redundant cryptography related

APIs. The weights and rank for the API

occurrences are shown in table 5.

Table 5 demonstrates that the cryptoAPIs that

are explicit were scored higher than other APIs

related to cryptography. This means that the

proposed method was effective in identifying

the cryptograph-related APIs more precisely

among all APIs included in the InitialAt

subset.

Training and Testing

The random forest machine learning algorithm

is used to train the model. However, four more

learning algorithms were also trained for

comparison purposes. They include Support

Vector Machines (SVM), K-Nearest

Neighbour (KNN), Multi-Layer Perceptron

(MLP), and AdaBoost.

The effectiveness of the proposed model was

assessed using several performance evaluation

metrics including accuracy, f-score, recall,

precision, false positive rate (FPR), false

negative rate (FNR), ROC-AUC and cross-

validation. We tested PEDLA against other

machine learning algorithms used in malware

classification and also conducted a

comparative analysis with models presented

by related works.

The first comparison is between PEDLA and

four different learning algorithms as shown in

table 7. According to the findings, the model

attained a detection accuracy of 98.6%,

Precision of 98.3%, recall of 99.1%, F score of

99.3% and a ROC-AUC of 99.1%.

Accuracy represents the ratio of all correct

predictions. A higher precision means the

lower the number of false positive errors

committed by the classifier. The higher the

recall value, the fewer cases misclassified as

negative. A high ROC-AUC value indicates

that the model can differentiate between

negative and positive occurrences well.

Table 7: Experiment results using different classifiers

Metric PEDLA SVM AdaBoost KNN MLP

Accuracy 0.986 0.915 0.975 0.978 0.935

F1-score 0.993 0.968 0.988 0.989 0.977

Precision 0.983 0.899 0.969 0.973 0.925

Recall 0.991 0.993 0.967 0.979 0.998

ROC-AUC 0.991 0.935 0.959 0.961 0.942

The highest accuracy on unseen test-set

within the first 20 seconds of execution is

shown in Table 8, along with the related

false positive rate (FPR) and false negative

rate (FNR). The highest accuracy of 98.6%

was achieved in the fifth second of

execution. However, as shown in figure 5,

performance is consistently high (greater

than 97%) even in the first few seconds.

The model's sustained stability at various

time intervals is an indication that it can

predict the threat's appearance earliest

possible.

Figure 5: PEDLA performance at varying time stamps

O. A. Okunade et al. ISSN: 2811-2881

108

Table 8: The highest accuracy on unseen test set

Classifier Accuracy (%) Time (s) FPR (%) FNR (%)

PEDLA 98.6 5 1.9 2.7

SVM 91.5 10 3.4 5.1

AdaBoost 97.5 8 4.7 7.2

KNN 97.8 4 1.9 3.2

MLP 93.5 14 3.9 5.5

A low FPR indicates that the model is less prone to generating false alarms, while a low FNR

indicates that it is less likely to predict a negative class wrongly.

The highest average accuracy during 10-fold cross validation on the training-set within the first 20

seconds of execution is shown in Table 9, along with the related false positive rate (FPR) and false

negative rate (FNR).

Table 9: Highest average accuracy during 10-fold cross validation

Classifier Accuracy (%) Time (s) FPR (%) FNR (%)

PEDLA 98.4 4 2.3 2.1

SVM 90.1 10 4.5 3.6

AdaBoost 95.6 4 6.7 5.2

KNN 97.1 3 6.4 5.7

MLP 92.9 13 7.2 5.8

The researchers also conducted a comparative analysis with few models presented by related works.

This is shown in Table 10 and Figure 6.

Table 10: Comparison of detection results with related works

Technique Accuracy (%) Recall

(%)

F-Score

(%)

Precision

(%)

FNR (%) FPR (%)

PEDLA 98.9 99.1 99.3 98.3 2.6 1.8

Rhode et al

(2021)

96.1 - - - 4.7 3.1

Sgandurra et

al (2016)

97.9 96.3 - - 2.3 1.6

Scaife et al

(2016)

93.0 - - - 6.0 -

Homayoun

et al (2017)

98.3 98.0 98.0 - - 0.9

Figure 6: Comparison of detection accuracy

O. A. Okunade et al. ISSN: 2811-2881

109

The detection accuracy is the proportion of all

correct predictions. Accuracy, however, isn't

necessarily a good indicator of a model's

ability to make correct predictions. Despite

being a useful assessment metric, it may not be

adequate owing to the nature of the dataset. If

a dataset is imbalanced, for instance, there is a

bias in favour of the largest represented group.

To address this issue, other performance

metrics including F-score, recall, precision,

FPR and FNR were used in this study.

Prediction

The prediction capability in our early detection

of crypto-ransomware model is explained by

the good results produced. It can be shown

from the results that the model achieved a

detection accuracy of 98.6%, F score of

99.3%, ROC-AUC of 99.1%, Precision of

98.3% and a recall of 99.1%.

DISCUSSION OF RESULTS

This research proposed the idea of early

crypto-ransomware detection depending on

dynamic pre-encryption phase boundaries. The

PEDLA was proposed and developed to

dynamically define the pre-encryption stage

border in the lifecycle of crypto-ransomware

and extract the features before encryption that

were used in training the detection model. In

contrast to fixed time-based thresholding,

PEDLA uses a dynamic thresholding

approach, which entails creating a border

vector prior to encryption that contains the

cryptography-related APIs being called. This

vector's entries were selected based on their

computed weights utilizing the proposed

approach.

The comparative findings in Figure 6 show

that our approach was more effective in

identifying the pre-encryption border than the

fixed-time thresholding method used in related

works. This is due to the dependence on

cryptography-related APIs to monitor the start

of encryption for every sample, irrespective of

how long it took for encryption to begin. Table

7 experimental findings show that the

cryptoAPIs that are explicit were scored higher

than other APIs related to cryptography. This

means that the proposed method was effective

in identifying the cryptography-related APIs

more precisely among all APIs included in the

Initial subset.

Table 10 and Figure 6 also demonstrate how

well the model performed compared to the

related works in Scaife et al. (2016),

Sgandurra et al. (2016), Homayoun et al.

(2017) and Rhode et al. (2021). Accordingly,

the PEDLA dynamic thresholding proved

more successful than other thresholding

strategies in capturing the behavioural

component of crypto-ransomware attacks at

earlier stages. This is due to the PEDLA's

ability to incorporate more data than other

strategies since it monitors the onset of

encryption for each instance separately. It

utilizes the supplementary traits that certain

ransomware samples in the dataset may have,

allowing it to collect more pre-encryption data.

Despite the fact that some ransomware

instances begin encryption pretty fast, there

are certain cases when the encryption begins

late. As a result, dynamic thresholding

compensates for a lack of data in samples that

begin encryption quite fast with data gathered

by samples that begin encryption late.

CONCLUSION

The goal of this research was to create a

scheme for detecting crypto-ransomware

attacks during the pre-encryption stage. The

solution was effective in defining the crypto-

ransomware lifecycle's pre-encryption borders,

extracting the distinctive features that depict

the attack patterns in this stage, and

incorporating the features into the creation of

the crypto-ransomware detection model.

Crypto ransomware is a particularly dangerous

kind of malware. It is distinguished by its

irreversible effect even after detection and

removal. As such, early detection is critical to

safeguarding user data and files from being

held for ransom. However, the idea of early

crypto-ransomware detection is constrained in

how it determines the pre-encryption border.

The existing studies either use a set threshold

to define the pre-encryption border or utilize

the entire data obtained during the attack

which is ineffective in early detection.

In this research work, an early detection model

for crypto ransomware was proposed. The

model focuses on API calls and functions to

detect malware encryption operation. APIs

allow programs to interact and send

information to one another; once we know

which APIs are being called, the machine

learning model can identify and halt the

process. This gives us control and the ability to

examine requesting application to determine

whether it is a ransomware and then terminate

it before it encrypts any files.

The model creates the pre-encryption border

vector, which comprises all cryptography-

O. A. Okunade et al. ISSN: 2811-2881

110

related APIs responsible for determining the

pre-encryption stage border during the crypto

ransomware lifecycle. The model proved more

effective than previous works in defining the

pre-encryption stage border of crypto

ransomware attacks.

Four classifiers including Support Vector

Machines (SVM), K-Nearest Neighbour

(KNN), Multi-Layer Perception (MLP), and

AdaBoost, were utilized to evaluate the

model's classification abilities. Furthermore, a

comparison was done between the related

works and our model. The findings show that

PEDLA performed better across most

calculated metrics, including accuracy,

precision and recall. PEDLA also has a low

FPR of 1.9%, indicating that it is highly

unlikely to misclassify a benign program. This

demonstrates the effectiveness of the proposed

approach in precisely defining and extracting

the features most closely related with the pre-

encryption stage, and then using these features

to build the detection model. Consequently, we

can conclude that the proposed scheme may

well be used for early detection of crypto

ransomware attacks during the pre-encryption

stage.

FUTURE WORK

PEDLA usage has its limitations. One of the

notable limitations is its dependence on use of

Windows API, which provided more efficient

encryption process by crypto ransomware.

PEDLA does not have the ability to detect

crypto ransomware that uses its own native

encryption code. Hence, PEDLA should be

utilized as a supplement detection system

rather than the only crypto ransomware

detection system. More so, PEDLA was

designed to detect only one type of

ransomware, whereas there are numerous

kinds of malware in the wild.

The results coming from PEDLA are very

good but it requires further improvements for

it to be used by the public. This is due to the

fact that the configuration and installation of

supporting applications like MySQL and

Cuckoo Sandbox can be challenging for many

people. Hence, for future work, PEDLA

should be built such that it can be implemented

as a standalone application without the need

for a separate configuration of supporting

applications.

CONFLICT OF INTEREST

We have no conflicts of interest to disclose.

REFERENCES

Al-Rimy, . . S., Maarof, M. A., Alazab, .,

Shaid, S. . M., Ghaleb, F. A.,

Almalawi, A., &l-Hadhrami, .

(2021). Redundancy coefficient

gradual up-weighting-based mutual

information feature selection

technique for crypto-ransomware early

detection. Future Generation

Computer Systems, 115, 641-658.

Aslan, O. A., & Samet, R. (2020). A

comprehensive review on malware

detection approaches. IEE ccess, 8,

6249-6271.

Alzahrani, ., Alshehri, ., Alshahrani, .,

Alharthi, R., Fu, ., Liu, ., &hu, Y.

(2018, ay). RanDroid: structural

similarity approach for Detecting

ransomware applications in android

platform. In 2018 IEE International

Conference on Electro/Information

Technology (IT) (pp. 0892-0897).

IEE.

Baldwin, J., & Dehghantanha, . (2018).

Leveraging support vector machine for

opcode density based detection f

crypto-ransomware. n Cyber threat

intelligence (pp. 107-136). Springer,

Cham.

Continella, ., Guagnelli, ., Zingaro, G., De

asquale, G., Barenghi, ., Zanero, S.,

& aggi, F. (2016, December).

ShieldFS: a self-healing, ransomware-

aware file-system. In Proceedings of

the 32nd Annual Conference on

Computer Security Applications (pp.

336-347).

Gazet, A. (2010). Comparative analysis of

various ransomware virii. Journal in

computer virology, 6(1), 77-90.

Hwang, J., Kim, J., Lee, S., & Kim, K. (2020).

Two-stage ransomware detection

using dynamic analysis and machine

learning techniques. Wireless Personal

Communications, 112(4), 2597-2609.

Kharaz, ., Arshad, S., Mulliner, C.,

Robertson, W., & irda, . (2016).

{UNVIL}:  large-scale, automated

approach to detecting ransomware. In

25th {USNIX} Security Symposium

({USNIX} Security 16) (pp. 757-

772).

O. A. Okunade et al. ISSN: 2811-2881

111

Kok, S.H, Azweem, A., Jhanjhi, N.Z. (2022).

Early detection of crypto-ransomware

using pre-encryption detection

algorithm. Journal of King Saud

University-Computer and Information

Sciences, (pp. 1987-1993).

Kolodenker, ., Koch, W., Stringhini, G., &

gele, . (2017, pril). Paybreak:

Defense against cryptographic

ransomware. In roceedings of the

2017 CM on sia Conference on

Computer and Communications

Security (pp. 599-611).

Mohurle, S. & Patil, .  Brief Study of

WannaCry Threat: Ransomware

ttack 2017. nternational Journal of

Advanced Research in Computer

Science, vol. 8, No. 5, 2017.

Njoroge, P.W. (2022). A Crypto-Ransomware

Detection Model For The Pre-

Encryption Stage Using Random

Forest Algorithm (Masters

Dissertation, Kenya College of

Accountancy University)

Nieuwenhuizen, D. (2017).  behavioural-

based approach to ransomware

detection. Whitepaper. MWR Labs

Whitepaper.

Oz, H., Aris, A., Levi, A., & Uluagac, A. S.

(2021). A Survey on Ransomware:

Evolution, Taxonomy, and Defense

Solutions. arXiv preprint

arXiv:2102.06249.

Rhode, . (2021). Racing demons: Malware

detection in early execution (Doctoral

dissertation, Cardiff University).

Sgandurra, D., Muñoz-gonzález, L., Mohsen,

R., Lupu, .C., 3026. Automated

dynamic analysis of ransomware:

benefits, limitations and use for

detection.

Shaukat, S. ., & Ribeiro, V. J. (2018,

January). RansomWall:  layered

defense system against cryptographic

ransomware attacks using machine

learning. In 2018 10th nternational

Conference on Communication

Systems & Networks (COSNETS)

(pp. 356-363). IEE.

Subedi, . ., Budhathoki, D. R., & Dasgupta,

D. (2018, ay). Forensic analysis of

ransomware families using static and

dynamic analysis. In 2018 IEE

Security and Privacy Workshops

(SW) (pp. 180-185). IEE.

Takeuchi, Y., Sakai, ., & Fukumoto, S.

(2018, August). Detecting ransomware

using support vector machines. In

roceedings of the 47th International

Conference on Parallel rocessing

Companion (pp. 1-6).

Tariq, . .  Review of Deep Learning

Security and Privacy Defensive

Techniques, Mobile Information

Systems, vol. 2020, 2020.

Taylor, . (2017). Ransomware Detection

Using Machine Learning and hysical

Sensor Data. Southern Methodist

University.

Wecksten, ., Frick, J., Sjöström, A., & Järpe,

. (2016, ctober).  novel method

for recovery from Crypto Ransomware

infections. In 2016 2nd IEE

nternational Conference on

Computer and Communications

(CCC) (pp. 1354-1358). IEE.

Zhang, ., Xiao, ., Mercaldo, F., Ni, S.,

Martinelli, F., & Sangaiah, . .

(2019). Classification of ransomware

families with machine learning based

on -gram of opcodes. Future

Generation Computer Systems, 90,

211-221.

