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ABSTRACT 
  

The Yobe River Basin, situated in the semi-arid region of Africa, has 

experienced low river flows attributed to climate variability, high infiltration 

rates and obstruction of river channel capacity by weeds such as Typha 

Australis. These low stream flows have reduced the volumes of water from 

rivers, directly affecting water availability, distribution, ecosystem and crop 

failures, leading to significant food security concerns and financial losses. 

Particularly in the Yobe River Basin, mitigatory interventions have been 

hampered by insecurity challenges prevalent in the region for almost two 

decades, leading to inconsistencies in available data for policy making and 

management. Several techniques are available depending upon purpose, data 

requirement and hydrological characteristics. The climatic variability, data 

insufficiency and the need for water supply planning and management of the 

Yobe River Basin stress the need for the combination of two or more methods 

of analysis. The PRMS and PREMHYCE application packages have shown 

promise in their applications for watersheds of varying locations, coupled with 

the threshold level method. Data inconsistencies are recommended to be 

treated using climatic/hydrological indices such as the TSI, which integrates 

both Precipitation and Streamflow, making it more predictive. 

Corresponding author: Alkali A.N, Email: abdulhamidalkali.aa@unimaid.edu.ng 

Department of Civil and Water resources Engineering, University of Maiduguri 

INTRODUCTION 
Drought occurs when water availability falls 

substantially below normal levels and supply 

cannot meet demand over a defined period (Zhou 

et al., 2021). It is commonly classified into four 

categories: meteorological, hydrological, 

agricultural, and socio-economic drought (Esit & 

Yuce, 2022; Smakhtin, 2001). Drought represents 

a water shortage affecting humans, livestock, and 

agriculture, often associated with but not limited 

to deficits in rainfall (MAFGWI, 2017). 

Low stream flow is defined as the deficit of 

streamflow and/or surface water volume 

(Corderro et al., 2021). Streamflow is highly 

sensitive to variations in precipitation, while large 

hydrologic structures can reduce flow and 

consequently limit access to surface water 

(Dan’azumi & Ibrahim, 2022). Low flows 
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typically occur seasonally and represent the driest 

portions of a hydrograph. Hydrological drought, 

which is closely associated with low stream flows, 

is characterised by persistent reductions in stream 

discharge over one or more consecutive years 

(Smakhtin, 2001). 

Goal 6 of the United Nations Sustainable 

Development Goals emphasises ensuring global 

availability and sustainability of water and 

sanitation through Integrated Water Resources 

Management (He & James, 2021). Analogies exist 

between flood and low flow frequency analyses in 

water resources design, planning, and operations. 

However, little effort has been directed at 

integrating flood and low stream flow assessment 

knowledge (Islam et al., 2021). Consequently, 

researchers and water policy experts have 

emphasised formulating policies and frameworks 

to secure water and soil as essential 

environmental resources (Doro et al., 2020). 

Reduced streamflow is among the most direct and 

observable indicators of low flows, significantly 

impacting freshwater supply and agricultural 

systems (Ahsan et al., 2023). In the Near East and 

North Africa, drought has long been associated 

with famines, large-scale migrations, and the 

collapse of civilisations. Over the past four 

decades, the region has witnessed an increase in 

the frequency, duration, and extent of drought 

events, often with severe socio-economic and 

environmental impacts, primarily attributed to 

climate change (Bazza, 2018). Climate change 

reduces available water volumes from rivers, 

lakes, and groundwater, affecting water 

distribution and energy supplies. It also increases 

tree mortality and wildfire incidence, and reduces 

vegetation carbon uptake, which collectively 

influences terrestrial carbon storage. Furthermore, 

crop failures linked to climate variability raise 

food security concerns and financial losses (Jiao 

et al., 2021). 

Despite their global importance, tropical regions 

have received less attention in drought research, 

limiting the reliability of monitoring and 

restricting understanding of spatiotemporal 

drought dynamics across scales (Corderro et al., 

2021). However, satellite-based platforms have 

gained prominence in drought studies in recent 

years, offering spatial and temporal advantages. 

Advances in algorithms, cloud computing, and 

storage capacity have expanded the application of 

remote sensing in drought monitoring and 

assessment (Jiao et al., 2021). 

In the Yobe River system, surface water generally 

appears from August to October, with 

groundwater as the only source in the remaining 

dry months (Adamu et al., 2020). Parts of the 

river are heavily infested with reeds and weeds 

such as Typha, which obstruct flow and cause 

water diversion along undefined pathways. This 

invasion has been linked to the progressive 

recession of the Yobe River (IUCN, 2013). Lake 

Chad has been particularly affected, with its open 

water surface shrinking from over 26,000 km² in 

1963 to approximately 1,500 km² in 2021, mainly 

due to losses from the Yobe River and other 

tributaries. This decline has severely affected 

regional economic activity and food security 

(Kombe, 2009). The problem is compounded by 

limited institutional and technological capacity to 

adopt conservation and engineering solutions 

(Salman & Momha, 2009). 

This study, therefore, reviews methods of low 

stream flow analysis applicable to the Yobe River 

Basin, to contribute to a broader framework for 

catchments with similar climatic and geographic 

conditions. 

General Criteria for Low Stream Flow 

Analysis 

Low stream flow analysis methods are usually 

categorised based on several factors, including the 

purpose of analysis, the availability of data, 

temporal and spatial scales, and hydrological 

features. These standards aid in identifying the 

best techniques for examining and evaluating low-

flow conditions in rivers and streams (Semananda 

& Hewa, 2022). 

The purpose of the analysis relates to the 

objective, which may be forecasting, frequency 

analysis, or drought severity estimation. The 

probability of low flow episodes, such as 7-day or 

10-year low flow, is the primary focus of 

hydrologic frequency analysis. The length, 

severity, and volume deficit of periods of low 

flows are highlighted in the description of low 

flow. Regression, machine learning, and time 
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series modelling are some of the methods used in 

forecasting and modelling to anticipate low flow 

circumstances (Delsanto et al. 2023). 

The available data for any given case of study 

refers to Temperature, Precipitation, and 

simulated or observed streamflow data. 

Techniques for Observed Streamflow make use of 

measured flow records. Techniques involve the 

use of climatic and hydrological indices in order 

to establish relationships for forecasting. 

Simulating low flows using hydrological models 

(Macedo et al., 2025) 

The time-scale of interest, such as the daily, 

multi-day, seasonal or annual low flow 

conditions, is also a factor in determining the 

method of selecting a technique. Examples of 

methods are time series modelling and frequency-

duration curves (Vogel & Fennesey, 1994). 

Low-flow analysis techniques based on 

hydrological features are classified based on 

several features. The Flow regime characteristics 

require techniques that can handle zero flow and 

discontinuities for Perennial or Intermittent rivers. 

Recession analysis or event-based modelling is 

also ideal for stable and flashy flow regimes 

(Smakhtin, 2001; Tallaksen & Van Lanen, 2004). 

The Baseflow Index is used to determine the 

Baseflow contribution to a river. Watershed 

characteristics such as catchment size and geology 

type need high-resolution models, seasonal low-

flow analysis and models that simulate rapid 

recharge and delayed baseflow. Low flow 

duration or persistence is another criterion that 

affects the technique to be adopted with respect to 

hydrologic features of a catchment; the 7-day 

minimum flow statistics for short duration and 

monthly or seasonal indices, drought duration-

severity curves for longer durations are 

considered (Mishra & Singh, 2010).  

Any one or a combination of methods 

would depend upon the particular case of study 

concerning the above-mentioned criteria. 

 Table 1: General Criteria for selecting Technique of Low Flow Analysis 

Criterion Description Method 

Purpose of 

Analysis 

Frequency, low flow severity, forecasting etc. Time Series 

Modeling, 

Streamflow Duration 

Curves 

Data 

Availabilty 

Temperature, Precipitation, Relative Humidity, Evapotranspiration, 

Solar Radiation, Wind Speed, Streamflow 

Hydrological/Climatic 

Indices and Models, 

Regression and 

machine learning, 

Streamflow Duration 

Curves 

Time-Scale Daily, multi-day, seasonal or Annual Time-series 

modeling/Frequency 

analysis 

Hydrological 

Features 

Flow Regime, Catchment size, Perennial/Intermittent streams etc. Hydrological models, 

GIS and Remote 

sensing methods. 

 
The Yobe River Basin 
The area under study is the Yobe River which 

drains into the Lake Chad in North-East Nigeria. 

The catchment lies within the geographical 

locations of 12044’49.42’’N and 11002’56.17’’E 

in Gashua to 13041’43.49’’N and 13022’14.49’’E 

in Malum-Fatori. The basin has a catchment area 

of 32,000Km2 measured with ArcGIS 10.7.1. 

Annual rainfall amount is strongly contrasted 

throughout the basin ranging from 1,500mm to 

less than 100mm annually. Due to high 

temperatures throughout the year, the potential 

evapo-transpiration exceeds 2,000mm per year 

(Adamu et. al., 2020). The Yobe river basin has 
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exhibited a significant level of sensitivity to 

weather variability and demographic 

characteristics amongst others. The trend in this 

reduction had been recorded in which water level  

had been estimated in Bol (a village situated in 

Chad in the southern pool of the lake) and 

N’Guigmi (a village in Niger at the northern pool 

of the lake). Estimated levels from the 

Topex/Poseidon satellite had also been estimated 

where the Yobe River intersects the Lake Chad 

(Martinson, 2010). 

 

 

Figure 1: Map of Nigeria showing states covering 

the study area 

 

 

Figure 2: Map of the study area 

 

 

 
The Chad formation overlays the Yobe River 

Basin and is separated into three aquiferous 

zones: Upper, Middle and Lower aquifers. The 

Upper aquifer is unconfined and semi-confined, 

while the Middle and Lower aquifer zones are 

confined. The Middle aquifer consists mainly of 

fine to medium-grained sand sandwiched between 

the silty and clayey part of the Chad formation at 

a depth of about 250 m with an average thickness 

of about 50 m. The Lower aquifer is encountered 

in Maiduguri, Gudumbali, Kukawa and Monguno 

areas of Borno State and ranges in depth from 250 

m to 500 m depending on the local geology 

(Adamu et al., 2020). The majority of the 

population in the basin, who are mainly traditional 

smallholders producing staple foods for 

household consumption and have marginal 

connections to the market, are overwhelmed by 

the depletion of water in the basin. Interest has 

been developing in recent years due to the failure 

of large-scale irrigation schemes, which have led 

to seeking ways to improve the productivity and 

livelihood of the small-scale farmer (Salman & 

Momha, 2009). There is a high tendency for the 

situation in the basin to worsen in the future as the 

population and wildlife continuously migrate in 

search of areas with water for survival. The 

situation has made climatic refugees from the 

vulnerable populations as they migrate across the 

borders (Kombe, 2009). 

Techniques of Low Stream Flow Analysis in 

the Yobe River Basin 
A few techniques are considered suitable for the 

analysis of Low Stream Flow in the Yobe River 

Basin, considering the need for water resources 

planning and management due to climatic 

variability in terms of purpose and long-term 

stream flow inconsistencies in data availability. 
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Climatic data are available with inconsistent 

stream flow data due to the insurgency in the 

region. Subsequently, the methods are classified 

according to the criteria set in Table 1. The 

methods are hereby classified in terms of Low 

flow severity and duration, data availability and 

hydrologic features. 

Low Flow Severity and Duration Method. 
Low flow severity quantifies the volume of flow 

deficit below a predetermined threshold over a 

low-flow period. It is the cumulative shortfall 

compared to normal conditions or a set threshold. 

Low flow duration refers to the time, typically in 

days, weeks, or months, Streamflow remains 

below a defined threshold (Salehabadi et al., 

2024). The threshold level method of low flow 

analysis involves defining a level below which 

Streamflow is considered "low flow" or part of a 

drought event. The method helps to identify low-

flow events and their characteristics, such as 

duration, frequency, and deficit volume 

(Tallaksen et al., 2004). Yevjevich (1967) 

introduced the threshold level method based on 

the theory of runs. It defines droughts as periods 

when the water supply exceeds the current 

demand. Yevjevich (1983) later simplified this 

method by applying a constant demand 

represented by a threshold level; thus, low flows 

are defined as periods during which the 

Streamflow is below the threshold level. Based on 

the runs theory, a run is a period between two 

consecutive crossings of the truncation level, and 

it delineates a low-flow event. The run length then 

explains the duration of the drought event, and the 

run sum describes the cumulative deficit volume. 

The low flow characteristics include deficit 

volume and duration. 

Yahiaoui et al. (2009) conducted a frequency 

analysis of the flows in the Oued Mina catchment 

of Western Algeria. Yearly streamflow data were 

plotted to obtain the water deficit volume 

corresponding to its duration. Both volume and 

duration were plotted independently against the 

probability of occurrence. Using Weibull, 

Generalised Pareto and Log-Normal distributions, 

Log-Normal gives the best distribution. Deficit 

characteristics derived by the threshold level 

method gave comparable results for different 

kinds of streams, provided that comparable 

threshold levels are chosen according to the 

stream flow regimes. 

Sung and Chung (2014) developed a streamflow 

drought Severity-Duration-Frequency (SDF) 

curve in Gwangju, Republic of Korea, using the 

Threshold Level Method, which resembles the 

rainfall intensity duration frequency curve. 

Severity was the total water deficit volume to the 

target threshold for a drought duration. The 

method employed the threshold level for 

discharge. SDF curves for drought were 

developed for a specific volume according to a 

specific duration and frequency. They were 

designed to identify the relationship between 

streamflow drought severity, duration, and 

frequency. The severities increased with 

increasing durations and frequencies. The SDFs 

were recommended to be extended to conduct 

regional frequency analyses, which can estimate 

streamflow drought severity at ungagged sites.  

Yahiaoui (2019) conducted a frequency analysis 

of the extreme Streamflow using the threshold 

level method in the Wadi Mekerra catchment in 

the North-West of Algeria. The frequency 

analysis of the streamflow drought regime of the 

catchment was analysed with the Weibull 

distribution for both deficit volume and drought 

duration, combined with the probability of 

occurrence, to forecast the streamflow drought in 

the catchment. According to the goodness-of-fit 

tests, the Weibull distribution is adequate for both 

deficit volume and drought duration and can be 

used with the probability of occurrences for 

prediction. Therefore, it can be an effective tool to 

identify any streamflow droughts, as the 

probability plot correlation gave values of 0.990 

for both parameters.  

Sarigil et al. (2024) constructed flow duration 

curves, and the upper 10 and lower 10 percentiles 

were considered high and low, respectively. 

Specifically, Q1, Q5, and Q10 were categorised 

for the high flows, while Q90, Q95 and Q99 were 

classified for the low flows. An overall 

assessment of results shows that the best-fit 

probability distribution function does not change 

considerably from one Streamflow augmentation 

(SGS) to another for low flows. At the same time, 
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each SGS has its own probability distribution 

function for high flows.   

The threshold level method may be easy to 

understand and implement, especially for data-

scarce regions, and helps identify and analyse 

discrete low flow events, including duration, 

frequency and severity. It can also help define 

water management policies' minimum flow 

requirements or drought conditions. The threshold 

can be set based on statistical measures or specific 

environmental or operational criteria and is 

customizable to different ecological thresholds, 

water supply needs, and drought analysis. Despite 

these advantages, results are susceptible to the 

chosen threshold, which can be subjective and 

inconsistent across studies. The analysis also 

requires long-term, high-quality streamflow 

records for reliable threshold setting and analysis. 

The method may also ignore seasonal variations 

or changes due to climate and land use, and 

classify flows strictly as above or below the 

threshold, potentially oversimplifying the 

complex low-flow behaviour. The method also 

does not inherently account for ecological, socio-

economic or spatial factors unless supplemented 

by other analyses (Yahiaoui, 2019). 

Methods based on Data availability 
Streamflow records for direct low-flow analysis 

may sometimes be inconsistent or scarce. 

Available data may be used to obtain specific 

indices, or regression analyses are conducted to 

relate two or more parameters required for water 

management decision-making. Researchers and 

water managers use climatic and hydrological 

indices to estimate or predict low flows. Climatic 

indices are standardised metrics that summarise 

weather or climate conditions over time, used to 

detect and assess the potential causes of low flow 

events (Gebrechorkos et al., 2023). Hydrological 

indices are statistical or descriptive metrics 

derived from streamflow records to quantify and 

characterise low-flow behaviour in a river or 

watershed (Zhao et al., 2025).  

Nikravesh et al. (2020) investigated low flow 

episodes in two basins with different 

meteorological regimes, utilising multivariate 

frequency analyses of drought length, severity, 

and severity peak, based on constructing a Two-

variate Standardised Index (TSI). The Index was 

constructed based on a copula, using rainfall-

runoff data and comparing them with two 

common drought indices, the Standardised 

Precipitation Index (SPI) and Standardised Stream 

Flow Index (SSFI), in terms of derived drought 

features. According to the findings, TSI identified 

more severe drought conditions with shorter 

return durations during a particular drought 

episode than SPI and SSFI. This suggests that TSI 

may not have the drawbacks of SPI and SSFI. 

Esit and Yuce (2022) used the Standard 

Precipitation Index (SPI 1-, 3-, and 6-time series) 

for 24-gauge stations in the Ceyhan Basin, 

Turkey, to characterise drought situations when 

the value drops below zero. Mann-Kendall was 

used to test the relationship between length and 

severity. The duration and severity data were 

fitted to a distinct marginal distribution function. 

It was determined that the Weibull and 

Lognormal distributions were more suited for 

drought duration, while the Gamma and Weibull 

distributions were better suited for drought 

severity. Numerous indices have been created in 

drought analysis to evaluate and track droughts.  

Ahsan et al. (2023) assessed the response of 

hydrological extremes, i.e, flood and drought, to 

observed climate variability. The hydrological 

drought or low flows was estimated using the 

Streamflow Drought Index (SDI) in the Jhelum 

basin, NW Himalaya. Trend analysis was 

conducted using the Mann-Whitney test, and the 

breakpoint in the data set was detected with the 

Pettit test. Pearson's Correlation coefficient was 

used to determine the relationship between 

climatic variables and the streamflow data before 

using the SDI. For prediction, the Gumbel 

Probability Distribution was used for flood 

frequency analysis. The method revealed that the 

effects of the significant changes in river flow 

regimes brought about by climate change are 

particularly noticeable across the Jhelum River. 

Daide et al. (2024) used the Standardised 

Precipitation Index (SPI) and Baseflow Index 

(BFI) to assess low flow trends in four 

hydrometric stations in Chile. The SPI is 

frequently applied in hydrological studies, and the 

values were derived by using the rainfall data 
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selected from the stations and correlated with 

March flows, which mark the end of the dry 

season in the southern hemisphere and the 7-day 

minimum ultimatum. Time series plots showed 

flow indices over the study period. Spatial 

distribution maps were created to visualise trends 

across different stations and helped identify areas 

with significant flow declines or increases over 

time. 

The SPI allows precipitation deficits to be 

detected early, before they appear in streamflow 

records. It can be calculated over short-term to 

long-term time scales, which is helpful for 

seasonal streamflow prediction. This factor is 

beneficial in regions where streamflow is closely 

tied to rainfall variability. The Index only requires 

precipitation data, which makes it effective for 

low-flow prediction, especially in data-scarce or 

ungauged basins. The SPI can be used to develop 

SPI-low flow regression models to estimate 

streamflow anomalies based on climatic 

conditions. Despite the above advantages of the 

SPI, it is solely based on precipitation, which 

means that the river may still be experiencing low 

flows due to high temperatures or dry soils. Also, 

in catchments with delayed runoff, SPI may not 

correlate well with actual flows, as the timing of 

precipitation and its transformation into runoff is 

complex and not directly captured by SPI. SPI is a 

meteorological index since rivers with strong 

groundwater support may still have healthy flows. 

The Index must be calculated over a specific time 

window (i.e 1, 3, 6,12) months because choosing 

the wrong time scale could lead to misleading 

results. The SPI typically assumes that the 

precipitation follows a normal distribution, which 

may not hold in arid, semi-arid or highly variable 

climates where rainfall is erratic or skewed. The 

Index also does not account for spatial variability 

in catchment response and needs to be combined 

with hydrological models or observed flow 

statistics (Esit & Yuce, 2022). 

The Streamflow Drought Index (SDI) and 

Baseflow Drought Index (BDI) are typical 

hydrological indices. The Streamflow Drought 

Index, on the other hand, reflects the total water 

availability, including quick flow and baseflow 

and is suitable for hydrological drought detection 

on a catchment-wide scale, captures combined 

impacts of rainfall variability and catchment 

response, and is easy to apply using observed 

streamflow records. In short, it is suitable for 

general stream drought monitoring, including 

rivers where baseflow and surface runoff matter. 

However, the SDI is sensitive to short-term high 

flows, which may mask ongoing baseflow deficits 

(Huang et al., 2024). The Index is less effective in 

baseflow-dominated catchments where flow is 

more stable. The BDI focuses on sustained low 

flow conditions driven by groundwater 

contributions, which is key in dry season or 

drought analysis. It is better at capturing long-

term hydrological stress than SDI, which can 

fluctuate more with short-term rainfall. The BDI 

is more resilient to high flow bias from short-term 

rainfall events and is especially useful in baseflow 

or groundwater-dominated catchments. The BDI, 

however, requires baseflow separation from total 

streamflow and hence ignores the surface runoff 

component, which can still be relevant in low 

flow after rainfall events and is less valuable in 

runoff-dominated catchments (Laaha, 2023). 

Braden et al. (2024) determined the low flow 

statistics for continuous and partial record gauges 

in Ohio, USA. A Streamflow-Variability Index 

(SVI) was chosen as the explanatory variable for 

regression equations to predict the harmonic mean 

and annual and seasonal low-flow yields. A model 

with explanatory variables consisting of drainage 

area, decimal longitude, and, in most cases, SVI, 

was used to predict. The SVI values used in the 

regression analysis were obtained from a 

geospatial grid of SVI values developed for the 

study. The SVI helps differentiate between 

baseflow-dominated and runoff-dominated 

catchments, which is key for understanding flow 

regimes. It also improves regression model 

performance and can be calculated from historical 

daily streamflow data. However, short or 

incomplete streamflow records can skew the SVI, 

especially in basins with occasional extreme 

events or recording errors. 

Lonita and Nagavciuc (2018) forecasted low flow 

events over the Rhine and Elbe Rivers basin in 

Germany months in advance through 

teleconnection patterns with particular emphasis 
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on the summer of 2018. Teleconnections are 

significant relationships or links between weather 

phenomena at widely separated locations on 

Earth. The results showed that the 2018 summer 

low flow situation, over the Rhine and Elbe 

Rivers basin, could have been predicted up to two 

seasons ahead using previous months’ sea surface 

temperature, sea level pressure, precipitation, 

mean air temperature, and soil moisture. The 

forecast scheme can provide early warnings for 

the upcoming low-flow situations, thus offering 

the possibility for better management of the water 

resources. 

Stravs and Brilly (2010) developed a low-flow 

forecasting model using the M5 (Neural Network) 

machine learning method in the Sava River in 

Europe. The M5 machine learning is based on an 

algorithm developed by Quintan (1992), which 

uses regression and model trees generated from 

data, and performs hydrograph recession analysis 

of the available data. The regression and model 

trees generated with the M5 machine learning 

method gave a structural insight into the 

hydrological process that is being modelled. The 

M5 Machine Learning can provide powerful 

insights, especially in modelling linear 

relationships and integrating diverse hydrological 

inputs. It can also handle multivariate inputs like 

precipitation, temperature, soil moisture, etc., and 

is suitable for large datasets or real-time 

applications. However, it also requires good 

quality and quantity of data. It is susceptible to 

input variables and may struggle with sharp 

transitions or policy-defined thresholds unless 

explicitly trained to account for them. 

The Standardised Streamflow Index directly 

works well with daily and monthly records and 

strongly correlates with actual river conditions. It, 

however, requires long-term streamflow data 

(often 20 years plus) and has a lagged response to 

precipitation. It is considered robust and reliable 

for site-specific low flow analysis, especially 

when precipitation cannot explain stream 

conditions. 

The Two Variate Standardised Index, on the other 

hand, combines climate and hydrology in a single 

index, captures compound drought, helps explain 

low flow causes and can identify lagged 

relationships. However, it requires precipitation 

and streamflow data, is computationally more 

complex and is less commonly used in some 

operational settings like the SSI (Cuartas et al., 

2024). 

The Two Variate Standardised Index is more 

effective for comprehensive low-flow analysis 

because it integrates precipitation and streamflow, 

making it more diagnostic and predictive, 

especially for compound low-flow events. The 

SSI is more efficient for observed flow analysis 

and monitors streamflow anomalies over time, 

especially at daily and monthly scales. The SDI is 

more suited for long-term or seasonal water 

planning and is best for capturing cumulative 

drought intensity over seasons or water years. 

Methods based on hydrological characteristics 

Due to the peculiarity of each catchment, 

hydrological models are used for prediction by 

considering spatial characteristics. In hydrology, 

algorithms and models are essential tools used to 

analyse, simulate, and predict various 

hydrological cycle components. A hydrological 

model is a simplified, conceptual or mathematical 

representation of part of the hydrological cycle 

used to simulate or predict hydrological processes 

(Wannasin et al., 2021).  

Damirel et al. (2015) investigated the skill of a 

90-day low-flow forecast using hydrological 

models, i.e. Hydrologiska Byråns 

Vattenbalansavdelning (HBV) and Génie Rural à 

4 paramètres Journalier (GR4J), for the Moselle 

River in Western Europe. The models used 

forecasted meteorological inputs (precipitation 

and potential Evapotranspiration). The results of 

the comparison of forecast skills with varying 

lead times showed that GR4J was less skilful than 

HBV. The low-flow forecasts issued by HBV 

were more reliable compared to GR4J. HBV 

oversimplifies processes like groundwater 

recharge, deep percolation or capillary rise, which 

may limit accuracy. The HBV’s parameters are 

not directly measurable; hence, their values 

depend heavily on calibration, which may not 

generalise well in changing conditions. The 

package in its standard form is classified as either 

lumped or semi-distributed, which can be a 

drawback in heterogeneous catchments where low 
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flow behaviour varies spatially. Despite its 

robustness in various works, HBV has 

underperformed in very low flows unless 

carefully calibrated (Furqani et al., 2024). 

Cordero et al. (2021) assessed hydrological 

drought using publicly available Global 

Precipitation Products (GPP) and a Regional 

Climate Model (RCM), which provides input data 

to a very straightforward, semi-distributed 

rainfall-runoff model (HBV-Light). The study 

examined hydrological drought scenarios. First, 

the model simulating streamflow dynamics was 

calibrated using the GPP and observed rainfall. 

Second, a daily variable threshold approach was 

used to identify drought and assess its length, 

intensity, and severity. Third, an RCM was used 

to create future hydrological drought situations. 

Compared to the model driven by observed 

rainfall, the GPP CHIRPS (Climate Hazards 

Group InfraRed Precipitation with Station Data) 

model produced the best streamflow simulations 

overall. Additionally, the observed streamflow 

drought periods were accurately detected by 

CHIRPS. When combined with worldwide data, 

the model can effectively identify dry periods and 

their durations; however, at this time, model 

uncertainty prevents it from anticipating 

streamflow deficits with volume errors less than 

50%. 

Jiao et al. (2021) reported using satellite-based 

products for multi-sensor drought characterisation 

based on precipitation, land Surface temperature, 

soil moisture, groundwater, surface water storage, 

evaporation, snow data and vegetation vigour. 

Research on surface water has demonstrated that 

NASA's Gravity Recovery and Climate 

Experiment (GRACE) satellite's terrestrial water 

storage observations might offer crucial 

information about drought behaviour. However, 

GRACE data does have certain limits. Significant 

limitations are presented by GRACE's coarse 

spatial resolution (i.e., pixel sizes of about 300–

400 km) and post-processing requirements. 

Furthermore, because of the significant seasonal 

variations in water storage and the propagation 

uncertainty of the signal from all hydrological 

processes, it was discovered that GRACE-based 

terrestrial water storage estimates had a greater 

bias in humid locations. 

Ahmadalipour et al. (2017) projected both the 

meteorological and hydrological droughts of the 

Willamette River basin in the Pacific Northwest 

area of the USA. The hydrologic modelling was 

conducted using the Precipitation Runoff 

Modelling System (PRMS), a Physically Based 

semi-distributed hydrologic model for the 

Willamette River Basin. The calibration results 

revealed that streamflow simulations from the 

PRMS are in good agreement with observed flows 

for almost all calibration points.  

Nicolle et al. (2020) reviewed an operational tool 

for low stream flow forecasting called 

PREMHYCE. PREMHYCE includes five 

hydrological models: one uncalibrated physically-

based model and four storage-type models of 

various complexities calibrated on gauged 

catchments. PREMHYCE was tested on 118 

selected catchments in France with catchment 

sizes ranging from 9 to 111,000 km2. Results on 

the 2017 low-flow periods showed interest in 

using such a tool to help end-user decisions. The 

application, which comes close to the PRMS in 

terms of robustness, is the PREMHYCE. The 

PRMS can be more advantageous in detailed, 

process-based low flow simulation and for 

complex basins with deep groundwater 

interactions. PREMHYCE, on the other hand, is 

more advantageous in operational forecasting and 

quick deployment across regions, as well as for 

data-scarce regions needing simpler methods. In a 

nutshell, PRMS is more efficient for physically 

detailed, spatially distributed simulation of low 

flows. At the same time, PREMHYCE is effective 

due to its ensemble capabilities and operational 

efficiency (Nicolle et al., 2020). 

Vogel and Kroll (2021) highlighted low stream 

flow applications such as STREAMSTATS, 

GLSNET, SWToolBox, SWSTAT, DFLOW, and 

HEC-SSP. The need to compute various low 

streamflow statistics, such as the 7-day, 10-year 

low streamflow or the daily streamflow with an 

annual exceedance probability of 95% was 

outlined. Such low-flow statistics are required in 

various water resource design, planning, 

operations, and management settings. The HEC-
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SSP is more robust because it supports detailed 

frequency analysis, confidence intervals, 

customizable low flow events, and is accepted for 

formal reporting. It is best suited for in-depth, 

site-specific low-flow studies. The SWToolBox is 

considered to be next with excellent flow duration 

curves, baseflow separation, trend analysis, and 

historical comparison. STREAMSTATS is 

considered unbeatable if quick low-flow estimates 

at ungauged sites are required. DFLOW is more 

relevant for water quality-based design flow 

analysis. Using indices with some of the 

applications mentioned can boost their efficiency.  

Although the HBV remains effective in 

operational settings, data-limited basins and 

situations where simplicity and speed are 

priorities, the PRMS is more robust in low flow 

analysis in hydro-geologically complex basins, 

data-rich environments and watersheds where 

spatial variability matters. The PRMS is also 

more effective than Teleconnection patterns, a 

method that offers large-scale predictive insights 

through early warning of drought or low flow 

periods and is valuable in seasonal water 

resources planning, drought preparedness and 

reservoir operations (Roland, 2023). The method 

can be used with limited data requirements 

without detailed physical catchment data. The 

method, however, does not simulate streamflow 

but only correlates with it. Teleconnection 

patterns are region-specific and effective but lack 

spatial resolution and hydrological process 

representation (Xie et al., 2023). 

Between HEC-SSP, PRMS and PREMHYCE, the 

PRMS would be considered the best overall 

scientifically robust for low flow simulation 

because it models all processes contributing to 

low flow (infiltration, groundwater flow, 

Evapotranspiration, etc.) and is perfect for 

understanding and predicting low flows under real 

or future scenarios. The HEC-SSP is best for 

regulatory, site-specific low flow statistics, while 

the PREMHYCE is best for operational, regional 

or Ensemble Forecasting. Combining the three 

will give complete low-flow assessment data. 

Table 2 provides a summary of methods with their 

respective advantages and limitations. 

 

Table 2: Summary of Methods of Low Flow Analysis Measurement in the Yobe River Basin 

S/N Criteria Method Advantage Limitation 

1 Severity and 

Duration 

Threshold Level 

Method, Streamflow 

Duration Curves 

Easy to understand and 

implement, helps in 

identifying and analyzing 

discrete low flow events, 

useful in defining 

minimum flow 

requirements, set based on 

statistical measures or 

specific environmental or 

operational criteria, 

customizable to different 

ecological needs 

Results are highly sensitive to 

the chosen threshold, analysis 

requires long-term, high quality 

streamflow records for reliable 

threshold analysis, method 

ignores seasonal variations or 

changes due to climate and land 

use, oversimplifying the 

complex low flow, does not 

inherently account for spatial 

factors unless supplemented by 

other analyses 

2 Data Availabilty Climatic/Hydrologic 

Indices, 

Teleconnection 

Patterns 

Helps understand causes 

of low flows, enables 

comparison across space 

and time, improves 

modeling and forecasting, 

connects local flow to 

global climate, early 

detection of low flow 

events, and evaluates 

Reduces complex systems to 

single values, missing key 

nuances, Indices may not match 

the spatial or temporal scale of 

the analysis, may not account for 

changing land use, requires 

long-term, reliable data, climatic 

indices may not directly control 

low flows and do not reflect 
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climate change effects. anthropogenic changes to flow 

3 Hydrologic 

Characteristics 

HBV, HBV-light, 

GR4J, PRMS, 

PREMHYCE, 

SREAMSTATs, 

GLSNET, 

SWToolBox, 

SWSTAT, DFLOW, 

and HEC-SSP 

Models physical flow 

processes, not just 

statistical correlations, 

accounts for heterogeneity 

in soils, land use, climate, 

and topography, works 

with GIS and remote 

sensing, better suited for 

detailed watershed 

representation 

High data needs, Sensitive 

baseflow behavior hard to 

capture, tuning models for low 

flow is difficult, weak 

groundwater modeling, fine 

resolution needed, but 

expensive, not built for dry 

season hydrology 

 

 

 

CONCLUSION 

The nature of the Yobe River Basin in 

Northeastern Nigeria and its large catchment area 

of 32,000 km2 would require a physically 

distributed model to account for its spatial 

variability. Hence, the PRMS and PREMHYCE 

have shown more promise than other packages. 

However, due to the difficulty of the physically 

based models in representing low flows, an 

additional method may be required to achieve 

this. As such, the threshold level method may be 

ideal by constructing a flow duration curve and 

obtaining a threshold level capable of yielding 

low flow severity and duration. The above 

combination of methods may yield sufficient 

information for management and policy making, 

provided adequate data is available. Due to 

inconsistent data for the catchment area, however, 

using the Climatic/Hydrological Indices for data 

projection and forecasting may be used before 

applying the physically based model. The Two 

Variate Standardised Index may be used because 

it integrates precipitation and streamflow, making 

it more diagnostic and predictive. 
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