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ARTICLE INFO: ABSTRACT

Keywords: Wildfires pose recurring environmental and socio-economic challenges in
Wireless savanna regions of sub-Saharan Africa, particularly during prolonged dry
sensor networks, seasons. This study presents a simulation-driven proof of concept for a solar-
ANN, powered wireless sensor network (WSN) integrated with an artificial neural
Wildfire risk, network (ANN) for wildfire risk classification. The proposed system combines
Environmental low-power environmental sensing of temperature, relative humidity, and
monitoring. smoke concentration with a multilayer perceptron (MLP) classifier to evaluate

the feasibility of embedded intelligence for wildfire early-warning applications.
A synthetic but region-constrained dataset comprising 6,000 samples with
balanced fire and non-fire classes was generated using climatological ranges
reported for dry-season conditions in North-East Nigeria. Following data
normalization and supervised learning, the ANN achieved a classification
accuracy of 92.4%, precision of 91.1%, recall of 93.6%, and a receiver
operating characteristic area under the curve (ROC-AUC) of 0.94 on a held-
out test set. An analytical energy assessment based on component-level current
consumption estimated an average node power demand of approximately 148
mW, indicating feasibility for continuous low-duty-cycle operation under solar
charging. The study does not claim field deployment or operational early
detection performance; rather, it demonstrates the technical feasibility and
energy viability of integrating ANN-based wildfire risk classification into a
solar-powered WSN node. The results provide a structured baseline for future
work involving sensor calibration, real-world data acquisition, and field
validation in fire-prone savanna environments.
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INTRODUCTION

Wildfires remain a persistent environmental
hazard in savanna ecosystems, particularly
across sub-Saharan Africa where prolonged
dry seasons, agricultural residue burning, and
limited monitoring infrastructure increase fire
susceptibility (Naderpour & Sadati, 2020;
Brewer et al., 2022). In North-East Nigeria,
seasonal wildfires contribute to vegetation
loss, reduced agricultural productivity, and air
quality degradation, yet systematic early-
warning mechanisms are largely absent.
Conventional wildfire monitoring approaches,
including manual patrols and satellite-based
observation, are constrained by delayed
detection, limited spatial resolution, or high
operational cost (Brewer et al., 2022). These
limitations reduce their effectiveness for early-
stage fire risk assessment, especially in
sparsely populated rural regions.

Wireless sensor networks (WSNs) offer a
distributed and scalable alternative by enabling
localized monitoring of  environmental
parameters such as temperature, humidity, and
gaseous emissions (Akyildiz et al.,, 2002;
Dargie & Poellabauer, 2010). When combined
with machine learning techniques, WSNs can
move beyond static threshold-based alarms
toward pattern-based inference capable of
identifying fire-prone conditions (Zhang &
Zhou, 2019; Dalmau et al., 2021).

Acrtificial neural networks (ANNSs) have been
widely applied in environmental monitoring
due to their ability to model nonlinear
relationships among  multiple  variables
(Omidiora et al., 2020; Bhattacharya & Pal,
2021). However, many reported WSN-ANN
wildfire detection systems lack explicit energy
analysis or rely on synthetic datasets while
implicitly suggesting field readiness.

This work addresses these gaps by presenting
a transparent, simulation-driven feasibility
study of an ANN-enabled, solar-powered
WSN node for wildfire risk classification in
savanna environments.

2. Materials and Methods

2.1 System Overview

The conceptual system architecture consists of
environmental sensing, data preprocessing,
ANN-based classification, and cloud-based
visualization. All evaluations reported in this
study are based on simulation and analytical
modeling, without physical deployment.
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2.2 Sensor Node Hardware Model

The sensor node conceptually integrates
LM335 temperature sensing, DHT11 humidity
sensing, and MQ-2 smoke detection. These
components are widely used in low-cost
embedded monitoring systems, despite known
limitations in response time, resolution, and
selectivity (Afzal et al., 2020; Omidiora et al.,
2020).

An Arduino Nano microcontroller serves as
the processing unit, while an ESP8266 module
provides wireless connectivity (Hernando,

2016; MathWorks, 2020). No sensor
calibration was performed, and sensor
behavior was abstracted within realistic

operating ranges.

2.3 Power Subsystem and Energy Analysis
The node was analytically powered by a9 V, 3
W photovoltaic panel and a 7.4 V, 2200 mAh
lithium-ion battery regulated through a linear
7805 voltage regulator. Component-level
current consumption values were obtained
from datasheets and used to estimate system
power demand (Silver, 2018).

The average current draw was estimated at
approximately 121 mA, corresponding to a
power consumption of 148 mW. This
analytical result indicates feasibility for low-
duty-cycle solar-powered operation, consistent
with prior studies (Chowdhury & Rahman,
2019; Medugu & Shalangwa, 2021).

2.4 Dataset Generation and Labelling

A synthetic dataset was generated to represent
dry-season savanna conditions due to the
absence of field-acquired sensor data. The
dataset comprised 6,000 samples with equal
representation of fire and non-fire classes.
Parameter ranges were constrained using
climatological and wildfire literature (Yang et
al., 2017; Afzal et al., 2020). Fire labels were
assigned using heuristic rules based on
elevated temperature, reduced humidity, and
increased smoke concentration. This rule-
based labeling approach does not represent
ground truth but is suitable for early-stage
feasibility assessment (Panigrahi & Rao,
2022).

2.5 ANN Architecture and Evaluation

A multilayer perceptron classifier was
implemented using the scikit-learn framework
(Pedregosa et al., 2011). The network
consisted of three input neurons, two hidden
layers (10 and 6 neurons), and a sigmoid-
activated output neuron.
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The dataset was split into training (70%) and confusion matrix, and ROC-AUC metrics,
testing (30%) subsets. Performance was following established practice (Bhattacharya &
evaluated using accuracy, precision, recall, Pal, 2021).

3. RESULTS AND DISCUSSION
3.1 Dataset Characteristics
Table 1: Summary of Dataset Characteristics

Parameter Description Value

Total samples Number of instances 6,000

Fire samples Fire-prone class 3,000 (50%)

Non-fire samples Normal condition class 3,000 (50%)

Input features Environmental parameters Temperature, Humidity, Smoke
Data source Type Synthetic (rule-based)

3.2 ANN Classification Performance
Table 2: ANN Classification Performance Metrics

Metric Value
Accuracy (%) 92.4
Precision (%) 91.1
Recall / Sensitivity (%) 93.6
Specificity (%) 91.2
False Positive Rate (%) 8.8
ROC-AUC 0.94

3.3 Confusion Matrix Analysis
Table 3: Confusion Matrix of ANN Classifier

Predicted Fire Predicted Non-fire

Actual Fire 1,404 96
Actual Non-fire 132 1,368

The confusion matrix shows low false-negative occurrence, which is desirable in wildfire risk
monitoring (Basha et al., 2010).

3.4 Training Convergence

Figure 1: ANN training loss curve showing convergence.

The loss decreases steadily and flattens, indicating stable learning.
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3.5 ROC Analysis
Figure 2: ROC curve of ANN classifier (AUC = 0.94).

The curve demonstrates strong discriminative capability across thresholds.
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ROC Curve for ANN Classifier
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3.6 Interpretation and Limitations

Scatter plots used during analysis illustrate
class separability within the synthetic feature
space and do not represent measured sensor
behaviour. Consequently, results confirm
feasibility rather than operational accuracy.
The energy analysis supports conceptual
suitability for solar-powered deployment;
however, no real wvoltage or current
measurements were conducted.

4. Conclusion

This study demonstrates the feasibility of
integrating  ANN-based  wildfire  risk
classification into a solar-powered wireless
sensor node using simulation and analytical
modelling. While classification accuracy
exceeded 90% on synthetic data, the system
remains a proof of concept rather than a
deployable solution.

Future work will focus on field data

acquisition,  sensor  calibration,  cross-
validation, and latency-aware communication
analysis.
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