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ABSTRACT 

This study introduces the Topp-Leone Epsilon (TopLE) distribution as a 

flexible parametric model for lung cancer survival data from the North Central 

Cancer Treatment Group (NCCTG) trial (n = 228). Compared to the 

exponential, log-logistic, and log-normal models, the TopLE model achieved 

the lowest Akaike Information Criterion (AIC = 2234.9) and highest log-

likelihood (−1107.4), making it the best among the standard models used in 

survival analysis. The TopLE model is also shown to have the highest 

discriminative ability (C-index = 0.742), and the lowest error metrics (IBS = 

0.118; RMSE = 0.054). When extended with clinical covariates, male patients 

exhibited 48% higher mortality risk (HR = 1.48; 95% CI: 1.12 - 1.97), while 

age showed a marginal effect (HR = 0.98; p-value ≈ 0.05). Despite relatively 

wide confidence intervals for certain parameters, the TopLE model provided 

improved fit and visual agreement with Kaplan-Meier estimates. These 

findings suggest that the TopLE model is a robust, yet computationally 

sensitive, alternative for modelling complex hazard shapes in oncology 

survival data. 
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INTRODUCTION 

Survival analysis is central to medical 

statistics, particularly in oncology, where 

modelling time-to-event outcomes is essential 

for prognosis, treatment evaluation, and risk 

stratification (Collett, 2015; Bender et al., 

2005). Classical parametric distributions such 

as the exponential, Weibull, log-normal, and 

log-logistic remain widely applied because of 

their interpretability and long-standing use in 

biomedical research. Semi parametric- and 

non-parametric approaches, including the Cox 

proportional hazards model and the Kaplan-

Meier estimator (Kaplan & Meier, 1958), are 

also routinely employed for their flexibility 

and minimal distributional assumptions. 

However, clinical data may exhibit complex 

hazard structures that deviate from the simple 

monotonic or unimodal patterns assumed by 

these traditional models (Royston & Parmar, 

2002; Rutherford et al., 2020). In diseases such 

as lung cancer, hazards may present early 

peaks, intermediate turning points, or extended 

tails, which are difficult to capture using 

standard methods (Herndon et al., 2025). 

To address these challenges, recent research 

has increasingly turned to flexible approaches, 

including spline-based models (Royston & 

Parmar, 2002; Kaindal & Venkataramana, 

2025), cure models (Sano et al., 2024; Latimer 

et al., 2024), Bayesian parametric methods 

(Muse et al., 2022), and newly developed 

probability distributions (Nyandaiti et al., 

2025). These innovations provide an improved 

fit to real-world data while retaining 

interpretability for clinical decision-making 

(Heeg et al., 2022). 

Within this broader context, the Topp-Leone 

distribution (Nadarajah & Eljabri, 2008) and 

its concepts have attracted attention for their 

ability to apprehend skewness, heavy tails, and 

diverse hazard shapes in real-life 

time modelling. Current variants include the 

Topp-Leone exponentiated exponential 

(Alsuhabi, 2024), the Topp-Leone 

exponentiated Pareto (Correa et al., 2024; El-

Gohary A, et al.), and the DUS Topp-Leone-G 

family (Ekemezie, 2024). Similarly, the 

current extension of the Topp-Leone 

distribution (Obafemi et al., 2024) has 

demonstrated outstanding flexibility compared 

with traditional Topp-Leone families. Despite 

this large number of research literature, the 

application of Topp-Leone-based models to 

oncology survival data remains unexplored. 

Apart from Topp-Leone-based and traditional 

models, deep learning-based (Katzman et al., 

2018) and spline-based survival approaches 

(Rutherford et al., 2020) have achieved state-

of-the-art predictive accuracy. However, these 

methods can be algorithmically in-depth and 

less comprehensible, inspiring continued 

exploration of logically tractable yet flexible 

alternatives such as the TopLE distribution. 

The new distribution brings about three-

parameter flexible framework with favorable 

asymptotic properties. While several Topp-

Leone extensions exist, none have been tested 

on oncology survival datasets. The TopLE 

distribution offers additional epsilon 

parameters and flexibility, which regulate tail 

heaviness and hazard curvature – features 

often observed in lung cancer survival data. 

This research addressed this empirical gap by 

analyzing TopLE performance against 

classical and flexible models on the NCCTG 

dataset. The objectives in this study include: 

(1) to compare the TopLE model against 

widely used survival models – log-logistic, 

exponential, and log-normal – using 

likelihood-based and graphical criteria; (2) to 

evaluate the  predicting outcome of clinical 

covariates, including age, sex, Eastern 

Cooperative Oncology Group (ECOG) 

performance status and Karnofsky 

performance scores; and (3) to fit the survival 

functions opposing Kaplan-Meier estimator, 

thereby establishing both statistical and 

clinical validity. By addressing the objectives, 

this study evaluates whether the TopLE 

distribution provides a statistically and 

clinically meaningful improvement in 

modelling lung cancer survival data, and 

whether it can complement other flexible 

models. 

MATERIALS AND METHODS 

Data 

The data used in the analysis is the North 

Central Cancer Treatment Group (NCCTG) 

records of the survival of patients with 

advanced lung cancer, together with 

assessments of the patient’s performance 

status measured both by the physician and by 

the patients themselves. The data set contains 

228 patients, including 63 patients that are 

right censored. This dataset is publicly 

available and fully anonymized. Its use in this 

study complied with the ethical standards of 

the depositor. No identifiable patient 
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information was accessed. The dataset was 

originally presented and analyzed in Loprinzi 

et al. (1994), and was downloaded for this 

study at www.dataset.lixoft.com. 

By right censoring it means the censoring was 

due to the following reasons: (i) a patient 

emigrated out of the study area and it was 

impossible to follow up, (ii) a patient survived 

past the end of the study period, and (iii) the 

censoring was non-informative.  

Data Preparation 
Missing values (< 3%) in performance scores 

were handled via median imputation. 

Categorical covariates (sex and ECOG) were 

dummy-coded. The final sample size (n = 228, 

with 63 censored) reflects the full NCCTG 

cohort; no cases were excluded. Although 

modest, this sample size is consistent with 

prior oncology survival analyses (Loprinzi et 

al., 1994) and provides adequate precision for 

parametric model comparison. 

Estimating the Survival Models 

Parametric survival models were fitted using 

the flexsurv package in R (Jackson, 2016), 

which provides a framework for maximum 

likelihood estimation of both standard and 

user-defined survival distributions. Standard 

models, including the exponential, log-logistic, 

and log-normal distributions, are implemented 

natively and were directly applied to the 

dataset. 

The TopLE distribution, by contrast, required 

custom implementation. Specifically, the 

probability density function (PDF), cumulative 

distribution function (CDF), quantile function, 

and random variate generator were defined in 

R, following the characterisation in Nyandaiti 

et al. (2025). These functions are expressed, 

respectively, as 

 

 

 
These specifications, alongside a random number 

generator for simulation, were programmed into 

R and supplied to flexsurv, enabling the 

estimation of TopLE parameters (α, λ, δ) by 

maximum likelihood under an accelerated failure 

time (AFT) framework using the flexsurvreg 

function. The log-likelihood was optimized using 

the BFGS algorithm with numerical gradients. 

Wide confidence intervals observed for δ reflect 

mild identifiability issues due to parameter 

interdependence and right-censoring; bootstrap-

based standard errors were also computed to 

confirm stability. 

Model fit was evaluated using log-likelihood and 

Akaike Information Criterion (AIC).  In addition, 

predictive performance was assessed using the 

concordance index (C-index), integrated Brier 

score (IBS), and root mean square error (RMSE) 

between predicted model and Kaplan-Meier 

survival probabilities. Standard plots were 

created to evaluate visual alignment. Covariate 

effects were evaluated through hazard ratios 

derived from regression extensions of the TopLE 

survival model. 

RESULTS 

Model Comparison Based on Fits 

The TopLE, log-logistic, exponential, and log-

normal models were fitted to the lung cancer 

dataset. Estimation was performed in R using the 

flexsurv package (Kaindal & Venkataramana, 

2025), which supports user-defined distributions 

and maximum likelihood estimation. Fit 

statistics, such as log-likelihood and Akaike 

Information Criterion (AIC) were also compared, 

with results summarized in Table 1. 

 

http://www.dataset.lixoft.com/
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Table 1: Model Comparison Summary for Lung Cancer Survival Data 
Distribution TopLE Log-logistic Exponential Lognormal 

Parameter    Shape Scale Rate Meanlog sdlog 

Estimate 

 (se) 

5.86 

(6.77) 

1.7e-03 

(2.7e-04) 
1830.0 

(1190.0) 

1.91 

(0.128) 

276.0 

(302.00) 

7.3e-04 

(9.2e-04) 

6.91 

(1.18) 

1.00 

0.057 

95% CI L 0.609 1.3e-03 511 1.68 32.3 6.16e-05 4.60 0.898 

U 56.4 2.2e-03 6570 2.18 2360 8.59e-03 9.22 1.121 

LL 

(AIC) 

-1107.4 

(2234.9) 

-1109.9 

(2237.8) 

-1117.6 

(2251.1) 
-1119.0 

(2256.0) 

Fit 

Ranking 

1st 2nd 3rd 
4th 

CI = confidence interval, L = lower CI, U = upper CI, LL = loglikelihood function value, AIC = Akaike Information 

Criterion 

From Table 1 above, the TopLE model has 

presented highest log-likelihood and lowest 

AIC values, indicating the best fit which is 

ranking first. Irrespective of the wide 

confidence intervals for certain parameters, it 

proved more robust and flexible than the other 

classical models. The log-logistic model 

ranked second, with more stable parameter 

estimates. The exponential model, constrained 

by its constant hazard assumption, fit poorly, a 

limitation noted in prior survival modelling 

studies (Alsuhabi, 2024). The log-normal 

model, yielded the least, having weaker AIC 

and lower LL. These findings are consistent 

with reports that flexible parametric families 

often outperform classical models in complex 

survival settings (Bender et al 2005; Collett, 

2015). 

Furthermore, the predictive validation metrics 

for the four survival models presented in Table 

2 verify the TopLE’s performance over its 

competitors. The new distribution is better, 

having the highest discriminative ability (C-

index = 0.742) and the lowest error metrics 

(IBS = 0.118, RMSE = 0.054). The Log-

logistic model performs moderately with 

metrics C-index = 0.731, IBS = 0.121 and 

RMSE = 0.061; and the Log-normal and 

Exponential models demonstrated weaker 

predictive calibration as shown in the Table 2, 

with higher IBS and RMSE and lower C-index 

values. This pattern is consistent with findings 

in recent survival‐prediction literature, where 

more flexible or learning‐based models 

achieved improved discrimination and 

calibration (see for example Zeng et al., 2023; 

Deng et al., 2024). The performance of TopLE 

model over more standard models underscores 

its utility for lung cancer survival modelling 

where hazard shapes are complex and tail 

behavior matters. The goodness-of-fit between 

the Kaplan–Meier survival curve and the 

TopLE-based fitted curve was also assessed 

using the root-mean-square error (RMSE), 

indicating close alignment between the 

empirical and model-based estimates

. 

 

Table 2: Predictive Validation and Model Performance Comparison for Lung Cancer Survival Data 

Model AIC C-index IBS RMSE Rank 

TopLE 2234.9 0.742 0.118 0.054 1 

Log-logistic 2237.8 0.731 0.121 0.061 2 

Exponential 2251.1 0.691 0.143 0.077 4 

Log-normal 2256.0 0.702 0.134 0.069 3 
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Significance of the TopLE Model with 

Covariates 

Given the fit result, the TopLE survival 

regression model was extended to include 

clinical covariates. ECOG and Karnofsky 

performance scores are routinely used in 

oncology to stratify risk (Kaplan & Meier, 

1958), and sex differences in lung cancer 

survival have been consistently observed in 

population studies (Latimer et al., 2024). The 

parameter estimate results for the covariates 

are presented in Table 3. From the results, sex 

was a significant predictor – males had 48% 

higher risk of death than females. Age showed 

a marginal effect, with older age associated 

with slightly increased mortality. ECOG and 

Karnofsky effects were mixed and largely non-

significant, with wide confidence intervals, 

reflecting possible small subgroup sizes or 

data-coding issues (May et al., 2023). 

Importantly, differences between physician-

rated and patient-rated Karnofsky scores, as 

observed here, align with previous studies 

suggesting self-reported health can diverge 

from clinical assessments (Muse et al., 2022). 

 

Table 3: Covariate Effects in TopLE Distribution Fit to Lung Cancer Data 
Covariate Estimate Hazard Ratio (HR) 95% CI (HR) p-value  Remark 

Age - 0.0159 0.984 0.969 - 1.00  ≈ 0.05 Borderline significant 

Sex (Male)   0.3940 1.480 1.120 - 1.97  < 0.05 Significant 

ph.ecog 1 - 0.2460 0.782 0.522 - 1.17  > 0.05 Not significant 

ph.ecog 2 - 0.7130 0.490 0.240 - 1.00 ≈ 0.05 Borderline significant 

ph.ecog 3 - 0.7860 0.456 0.056 - 3.68 > 0.05 Not significant 

ph.karno - 0.0108 0.989 0.969 - 1.01 > 0.05 Not significant 

pat.karno   0.0098 1.010 0.999 - 1.02 ≈ 0.05 Borderline significant 

 

Visual Comparison of Survival Models against Kaplan–Meier 

The plots of the parameter survival curves of the various distributions fitted to the survival data, along 

with the Kaplan-Meier survival curve are presented in Figure 1. 

 
Figure 1: Kaplan-Meier and Parametric Survival Curves for the Lung Cancer Data 

 

Figure 1 presents the Kaplan–Meier curve 

alongside fitted parametric survival curves. 

The Kaplan–Meier estimator provides the 

empirical benchmark (Jackson, 2016). The 

TopLE curve tracked the Kaplan–Meier most 

closely, particularly at medium and long 

durations, confirming its robustness. The log-

logistic and log-normal provided reasonable 

approximations but diverged in later follow-

up. The exponential model under-estimated 
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survival throughout, consistent with its 

simplistic assumption of constant hazard 

(Alsuhabi, 2024). Visual model checking 

complements AIC-based ranking, as graphical 

agreement ensures that modelled survival 

functions reflect observed data realistically 

(Nadarajah & Eljabri, 2008). 

DISCUSSION OF RESULTS 

The study presents the TopLE distribution that 

is established as a robust and flexible three-

parameter model, capable of adapting to 

uncertain hazard functions. Despite larger 

parameter uncertainties, its AIC, LL and 

graphical fit validate the TopLE distribution   

as a suitable model for the lung cancer dataset. 

Furthermore, the log-logistic model was 

confirmed as a simply balanced and stable 

alternative model, while exponential and log-

normal models underperformed.  

Extending the TopLE to include clinical 

covariates, Males have a 48% higher risk of 

death compared to females. This effect is 

statistically significant and suggests that male 

patients have poorer survival outcomes. The 

study produced results consistent with 

established prognostic literature, male sex was 

significantly associated (p < 0.05) with poorer 

survival (Latimer et al., 2024), age exerted 

marginal effects, while ECOG and Karnofsky 

performance status present inconsistent 

associations, highlighting challenges in 

precision and sample heterogeneity (May et 

al., 2023; Muse et al., 2022). Age and ECOG 2 

displayed borderline significance (p ≈ 0.05). 

These findings, while suggestive, should be 

interpreted cautiously due to the small sample 

size and moderate censoring. 

The overall results of the study show that the 

combination of model fit, medical 

interpretability, and visual alignments with the 

empirical Kaplan–Meier curve, underscores 

the promise of TopLE distribution as a good 

parametric option for survival analysis in 

oncology. Its flexibility is comparable to, and 

in some respects competitors with, flexible 

spline models (Collett, 2015) and mixture cure 

models (Correa et al., 2024), positioning it as a 

valuable addition to the toolkit of survival 

analysts. 

While the TopLE model performed better in 

empirical fit, its wide confidence intervals and 

sensitivity to initialization suggest possible 

over-parameterization. The model’s 

performance should therefore be validated on 

larger, multi-centre datasets and standardize 

against spline and machine-learning-based 

survival models. Nonetheless, its analytical 

tractability and interpretability make it a 

valuable complement to existing flexible 

models.  

CONCLUSION 

The findings demonstrated that the TopLE 

model offers best fit and flexibility for 

modelling lung cancer survival data compared 

to standard parametric models. Despite wider 

confidence intervals for some estimated 

parameter values, it performed better than 

exponential, log-logistic, and log-normal 

models, demonstrating closer alignments with 

Kaplan-Meier curves. Covariate analyses 

agreed with established prognostic literature, 

confirming sex as a strong survival 

determinant while highlighting inconsistencies 

in performance status measures. These results 

suggest that TopLE distribution added to the 

survival modelling toolkit, providing a 

sustainable option to spline-based flexible 

parametric methods and cure models for 

complex oncological data (Bender et al 2005; 

Collett, 2015, Correa et al., 2024). Future 

studies should perform cross-validation on 

multi-institutional datasets; assess 

computational efficiency versus spline-based 

and mixture models; explore Bayesian 

estimation for improved parameter stability; 

and extend TopLE to joint survival-

longitudinal modelling frameworks. 
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