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ARTICLE INFO: ABSTRACT

Keywords: This study introduces the Topp-Leone Epsilon (TopLE) distribution as a
Censoring, flexible parametric model for lung cancer survival data from the North Central
Cancer Treatment Group (NCCTG) trial (n = 228). Compared to the
Flexsury exponential, Iog_—logistic, and_ Iog-nc_>rm_al models, the TopLE modgl achieved
" the lowest Akaike Information Criterion (AIC = 2234.9) and highest log-
Kaplan-Meier, likelihood (—1107.4), making it the best among the standard models used in
Oncology. survival analysis. The TopLE model is also shown to have the highest
discriminative ability (C-index = 0.742), and the lowest error metrics (IBS =
0.118; RMSE = 0.054). When extended with clinical covariates, male patients
exhibited 48% higher mortality risk (HR = 1.48; 95% CI: 1.12 - 1.97), while
age showed a marginal effect (HR = 0.98; p-value = 0.05). Despite relatively
wide confidence intervals for certain parameters, the TopLE model provided
improved fit and visual agreement with Kaplan-Meier estimates. These
findings suggest that the TopLE model is a robust, yet computationally
sensitive, alternative for modelling complex hazard shapes in oncology

survival data.
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INTRODUCTION

Survival analysis is central to medical
statistics, particularly in oncology, where
modelling time-to-event outcomes is essential
for prognosis, treatment evaluation, and risk
stratification (Collett, 2015; Bender et al.,
2005). Classical parametric distributions such
as the exponential, Weibull, log-normal, and
log-logistic remain widely applied because of
their interpretability and long-standing use in
biomedical research. Semi parametric- and
non-parametric approaches, including the Cox
proportional hazards model and the Kaplan-
Meier estimator (Kaplan & Meier, 1958), are
also routinely employed for their flexibility
and minimal distributional assumptions.
However, clinical data may exhibit complex
hazard structures that deviate from the simple
monotonic or unimodal patterns assumed by
these traditional models (Royston & Parmar,
2002; Rutherford et al., 2020). In diseases such
as lung cancer, hazards may present early
peaks, intermediate turning points, or extended
tails, which are difficult to capture using
standard methods (Herndon et al., 2025).

To address these challenges, recent research
has increasingly turned to flexible approaches,
including spline-based models (Royston &
Parmar, 2002; Kaindal & Venkataramana,
2025), cure models (Sano et al., 2024; Latimer
et al., 2024), Bayesian parametric methods
(Muse et al., 2022), and newly developed
probability distributions (Nyandaiti et al.,
2025). These innovations provide an improved
fit to real-world data while retaining
interpretability for clinical decision-making
(Heeg et al., 2022).

Within this broader context, the Topp-Leone
distribution (Nadarajah & Eljabri, 2008) and
its concepts have attracted attention for their
ability to apprehend skewness, heavy tails, and
diverse  hazard shapes in  real-life
time modelling. Current variants include the
Topp-Leone exponentiated exponential
(Alsuhabi, 2024), the Topp-Leone
exponentiated Pareto (Correa et al., 2024; El-
Gohary A, et al.), and the DUS Topp-Leone-G

family (Ekemezie, 2024). Similarly, the
current extension of the Topp-Leone
distribution (Obafemi et al., 2024) has

demonstrated outstanding flexibility compared
with traditional Topp-Leone families. Despite
this large number of research literature, the
application of Topp-Leone-based models to
oncology survival data remains unexplored.
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Apart from Topp-Leone-based and traditional
models, deep learning-based (Katzman et al.,
2018) and spline-based survival approaches
(Rutherford et al., 2020) have achieved state-
of-the-art predictive accuracy. However, these
methods can be algorithmically in-depth and
less comprehensible, inspiring continued
exploration of logically tractable yet flexible
alternatives such as the TopLE distribution.

The new distribution brings about three-
parameter flexible framework with favorable
asymptotic properties. While several Topp-
Leone extensions exist, none have been tested
on oncology survival datasets. The TopLE
distribution ~ offers  additional  epsilon
parameters and flexibility, which regulate tail
heaviness and hazard curvature — features
often observed in lung cancer survival data.
This research addressed this empirical gap by
analyzing TopLE performance against
classical and flexible models on the NCCTG
dataset. The objectives in this study include:
(1) to compare the TopLE model against
widely used survival models — log-logistic,
exponential, and log-normal —  using
likelihood-based and graphical criteria; (2) to
evaluate the predicting outcome of clinical

covariates, including age, sex, Eastern
Cooperative  Oncology Group (ECOGQG)
performance status and Karnofsky

performance scores; and (3) to fit the survival
functions opposing Kaplan-Meier estimator,
thereby establishing both statistical and
clinical validity. By addressing the objectives,
this study evaluates whether the TopLE
distribution provides a statistically and
clinically  meaningful  improvement in
modelling lung cancer survival data, and
whether it can complement other flexible
models.

MATERIALS AND METHODS

Data

The data used in the analysis is the North
Central Cancer Treatment Group (NCCTG)
records of the survival of patients with
advanced lung cancer, together with
assessments of the patient’s performance
status measured both by the physician and by
the patients themselves. The data set contains
228 patients, including 63 patients that are
right censored. This dataset is publicly
available and fully anonymized. Its use in this
study complied with the ethical standards of
the depositor. No identifiable patient
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information was accessed. The dataset was
originally presented and analyzed in Loprinzi
et al. (1994), and was downloaded for this
study at www.dataset.lixoft.com.

By right censoring it means the censoring was
due to the following reasons: (i) a patient
emigrated out of the study area and it was
impossible to follow up, (ii) a patient survived
past the end of the study period, and (iii) the
censoring was non-informative.

Data Preparation

Missing values (< 3%) in performance scores
were handled via median imputation.
Categorical covariates (sex and ECOG) were
dummy-coded. The final sample size (n = 228,
with 63 censored) reflects the full NCCTG
cohort; no cases were excluded. Although
modest, this sample size is consistent with
prior oncology survival analyses (Loprinzi et
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al., 1994) and provides adequate precision for
parametric model comparison.

Estimating the Survival Models

Parametric survival models were fitted using
the flexsurv package in R (Jackson, 2016),
which provides a framework for maximum
likelihood estimation of both standard and
user-defined survival distributions. Standard
models, including the exponential, log-logistic,
and log-normal distributions, are implemented
natively and were directly applied to the
dataset.

The TopLE distribution, by contrast, required
custom implementation. Specifically, the
probability density function (PDF), cumulative
distribution function (CDF), quantile function,
and random variate generator were defined in
R, following the characterisation in Nyandaiti
et al. (2025). These functions are expressed,
respectively, as

fx(x) = 2ai 57
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These specifications, alongside a random number
generator for simulation, were programmed into
R and supplied to flexsurv, enabling the
estimation of TopLE parameters (o, A, ) by
maximum likelihood under an accelerated failure
time (AFT) framework using the flexsurvreg
function. The log-likelihood was optimized using
the BFGS algorithm with numerical gradients.
Wide confidence intervals observed for & reflect
mild identifiability issues due to parameter
interdependence and right-censoring; bootstrap-
based standard errors were also computed to
confirm stability.

Model fit was evaluated using log-likelihood and
Akaike Information Criterion (AIC). In addition,
predictive performance was assessed using the
concordance index (C-index), integrated Brier
score (IBS), and root mean square error (RMSE)

1\ 28
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between predicted model and Kaplan-Meier
survival probabilities. Standard plots were
created to evaluate visual alignment. Covariate
effects were evaluated through hazard ratios
derived from regression extensions of the TopLE
survival model.

RESULTS

Model Comparison Based on Fits

The TopLE, log-logistic, exponential, and log-
normal models were fitted to the lung cancer
dataset. Estimation was performed in R using the
flexsurv package (Kaindal & Venkataramana,
2025), which supports user-defined distributions
and maximum likelihood estimation. Fit
statistics, such as log-likelihood and Akaike
Information Criterion (AIC) were also compared,
with results summarized in Table 1.
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Table 1: Model Comparison Summary for Lung Cancer Survival Data

Distribution TopLE Log-logistic Exponential Lognormal
Parameter a A & Shape Scale Rate Meanlog | sdlog
Estimate 5.86 1.7e-03 1830.0 1.91 276.0 7.3e-04 6.91 1.00
(se) (6.77) | (2.7e-04) | (1190.0) | (0.128) | (302.00) (9.2e-04) (1.18) 0.057
95% CI | L | 0.609 | 1.3e-03 511 1.68 32.3 6.16e-05 4.60 0.898
U | 56.4 2.2e-03 6570 2.18 2360 8.59¢e-03 9.22 1.121
LL -1107.4 -1109.9 -1117.6 -1119.0
(AIC) (2234.9) (2237.8) (2251.1) (2256.0)
Flt 1st 2nd 3rd 4th
Ranking

Cl = confidence interval, L = lower CI, U = upper CI, LL = loglikelihood function value, AIC = Akaike Information

Criterion

From Table 1 above, the TopLE model has
presented highest log-likelihood and lowest
AIC values, indicating the best fit which is
ranking first. Irrespective of the wide
confidence intervals for certain parameters, it
proved more robust and flexible than the other
classical models. The log-logistic model
ranked second, with more stable parameter
estimates. The exponential model, constrained
by its constant hazard assumption, fit poorly, a
limitation noted in prior survival modelling
studies (Alsuhabi, 2024). The log-normal
model, yielded the least, having weaker AIC
and lower LL. These findings are consistent
with reports that flexible parametric families
often outperform classical models in complex
survival settings (Bender et al 2005; Collett,
2015).

Furthermore, the predictive validation metrics
for the four survival models presented in Table
2 verify the TopLE’s performance over its
competitors. The new distribution is better,
having the highest discriminative ability (C-

index = 0.742) and the lowest error metrics
(IBS = 0.118, RMSE = 0.054). The Log-
logistic model performs moderately with
metrics C-index = 0.731, IBS = 0.121 and
RMSE 0.061; and the Log-normal and
Exponential models demonstrated weaker
predictive calibration as shown in the Table 2,
with higher IBS and RMSE and lower C-index
values. This pattern is consistent with findings
in recent survival-prediction literature, where
more flexible or learning-based models
achieved improved discrimination and
calibration (see for example Zeng et al., 2023;
Deng et al., 2024). The performance of TopLE
model over more standard models underscores
its utility for lung cancer survival modelling
where hazard shapes are complex and tail
behavior matters. The goodness-of-fit between
the Kaplan—Meier survival curve and the
TopLE-based fitted curve was also assessed
using the root-mean-square error (RMSE),
indicating close alignment between the
empirical and  model-based  estimates

Table 2: Predictive Validation and Model Performance Comparison for Lung Cancer Survival Data

Model AIC C-index | IBS | RMSE | Rank
TopLE 2234.9 0.742 0.118 | 0.054 |1
Log-logistic 2237.8 0.731 0.121 | 0.061 |2
Exponential 2251.1 0.691 0.143 | 0.077 |4
Log-normal 2256.0 0.702 0.134 | 0.069 |3
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Significance of the TopLE Model with
Covariates

Given the fit result, the TopLE survival
regression model was extended to include
clinical covariates. ECOG and Karnofsky
performance scores are routinely used in
oncology to stratify risk (Kaplan & Meier,
1958), and sex differences in lung cancer
survival have been consistently observed in
population studies (Latimer et al., 2024). The
parameter estimate results for the covariates
are presented in Table 3. From the results, sex
was a significant predictor — males had 48%

ISSN: 2811-2881

higher risk of death than females. Age showed
a marginal effect, with older age associated
with slightly increased mortality. ECOG and
Karnofsky effects were mixed and largely non-
significant, with wide confidence intervals,
reflecting possible small subgroup sizes or
data-coding issues (May et al., 2023).
Importantly, differences between physician-
rated and patient-rated Karnofsky scores, as
observed here, align with previous studies
suggesting self-reported health can diverge
from clinical assessments (Muse et al., 2022).

Table 3: Covariate Effects in TopLE Distribution Fit to Lung Cancer Data

Covariate Estimate | Hazard Ratio (HR) | 95% CI (HR) | p-value Remark

Age -0.0159 0.984 0.969 - 1.00 ~0.05 Borderline significant
Sex (Male) 0.3940 1.480 1.120-1.97 <0.05 Significant

ph.ecog 1 - 0.2460 0.782 0.522 - 1.17 > 0.05 Not significant
ph.ecog 2 -0.7130 0.490 0.240 - 1.00 ~0.05 Borderline significant
ph.ecog 3 -0.7860 0.456 0.056 - 3.68 > 0.05 Not significant
ph.karno -0.0108 0.989 0.969 - 1.01 > 0.05 Not significant
pat.karno 0.0098 1.010 0.999 - 1.02 ~0.05 Borderline significant

Visual Comparison of Survival Models against Kaplan—Meier
The plots of the parameter survival curves of the various distributions fitted to the survival data, along
with the Kaplan-Meier survival curve are presented in Figure 1.
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Figure 1: Kaplan-Meier and Parametric Survival Curves for the Lung Cancer Data

Figure 1 presents the Kaplan—Meier curve
alongside fitted parametric survival curves.
The Kaplan—Meier estimator provides the
empirical benchmark (Jackson, 2016). The
TopLE curve tracked the Kaplan—Meier most
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closely, particularly at medium and long
durations, confirming its robustness. The log-
logistic and log-normal provided reasonable
approximations but diverged in later follow-
up. The exponential model under-estimated
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survival throughout, consistent with its
simplistic assumption of constant hazard
(Alsuhabi, 2024). Visual model checking

complements AlC-based ranking, as graphical
agreement ensures that modelled survival
functions reflect observed data realistically
(Nadarajah & Eljabri, 2008).

DISCUSSION OF RESULTS

The study presents the TopLE distribution that
is established as a robust and flexible three-
parameter model, capable of adapting to
uncertain hazard functions. Despite larger
parameter uncertainties, its AIC, LL and
graphical fit validate the TopLE distribution
as a suitable model for the lung cancer dataset.
Furthermore, the log-logistic model was
confirmed as a simply balanced and stable
alternative model, while exponential and log-
normal models underperformed.

Extending the TopLE to include clinical
covariates, Males have a 48% higher risk of
death compared to females. This effect is
statistically significant and suggests that male
patients have poorer survival outcomes. The
study produced results consistent with
established prognostic literature, male sex was
significantly associated (p < 0.05) with poorer
survival (Latimer et al., 2024), age exerted
marginal effects, while ECOG and Karnofsky
performance status present inconsistent
associations, highlighting challenges in
precision and sample heterogeneity (May et
al., 2023; Muse et al., 2022). Age and ECOG 2
displayed borderline significance (p = 0.05).
These findings, while suggestive, should be
interpreted cautiously due to the small sample
size and moderate censoring.

The overall results of the study show that the
combination of model fit, medical
interpretability, and visual alignments with the
empirical Kaplan—Meier curve, underscores
the promise of TopLE distribution as a good
parametric option for survival analysis in
oncology. Its flexibility is comparable to, and
in some respects competitors with, flexible
spline models (Collett, 2015) and mixture cure
models (Correa et al., 2024), positioning it as a
valuable addition to the toolkit of survival
analysts.

While the TopLE model performed better in
empirical fit, its wide confidence intervals and
sensitivity to initialization suggest possible
Over-parameterization. The model’s
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performance should therefore be validated on
larger, multi-centre datasets and standardize
against spline and machine-learning-based
survival models. Nonetheless, its analytical
tractability and interpretability make it a
valuable complement to existing flexible
models.
CONCLUSION
The findings demonstrated that the TopLE
model offers best fit and flexibility for
modelling lung cancer survival data compared
to standard parametric models. Despite wider
confidence intervals for some estimated
parameter values, it performed better than
exponential, log-logistic, and log-normal
models, demonstrating closer alignments with
Kaplan-Meier curves. Covariate analyses
agreed with established prognostic literature,
confirming sex as a strong survival
determinant while highlighting inconsistencies
in performance status measures. These results
suggest that TopLE distribution added to the
survival modelling toolkit, providing a
sustainable option to spline-based flexible
parametric methods and cure models for
complex oncological data (Bender et al 2005;
Collett, 2015, Correa et al., 2024). Future
studies should perform cross-validation on
multi-institutional datasets; assess
computational efficiency versus spline-based
and mixture models; explore Bayesian
estimation for improved parameter stability;
and extend TopLE to joint survival-
longitudinal modelling frameworks.
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