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Keywords: We study full r-colourings of a finite chain [n] by interpreting colourings
Full colourings, as functions from [n] into a finite colour set. This functional framework
Group actions, enables a systematic analysis of the structure and enumeration of
Stirling numbers, colourings using tools from partition theory, Stirling numbers, and
Burnside’s lemma, permutation group actions. We decompose the space of all colourings
Symmetric group. according to image size and show that the number of colourings using

exactly k colours is governed by the Stirling numbers of the second
kind, yielding a natural Stirling decomposition of the classical identity
r™. We further investigate recolourings induced by the natural action of
the symmetric group S, on the domain. By analysing
permutation cycle structures and applying Burnsides Lemma, we
derive closed form expressions for both the average and total number of
recolourings, which are shown to be given by simple binomial
coefficients. These results reveal an unexpected regularity in the global
behaviour of recolouring orbits. The action of the alternating group 4,, is
also examined. Although fixed-point conditions depend only on cycle
structure, the restriction to even permutations introduce subtle
combinatorial differences. Computational evidence suggests that several
enumerative patterns persist in this setting, leading to conjectural
formulas for recolourings under 4,,. The results establish a unified link
between colouring problems, partition theory, and group actions, and they
provide a flexible framework for further extensions to other colouring
models and transformation semigroups.
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INTRODUCTION

Colouring problems on finite sets play a
fundamental role in algebraic
combinatorics, permutation group theory,
graph theory, and the theory of
transformation semigroups. At their core,
such problems seek to understand how
assignments of labels or colours behave
under symmetry and how these
assignments can be classified up to
equivalence induced by group actions.
Classical results in this area originate
from Burnsides orbit-counting principle
and Polya’s enumeration theory, which
provide powerful tools for counting
inequivalent colourings under
permutation actions Albertson (1996)
and Polya (1937). These ideas have since
been extended and refined in the study of
distinguishing colourings of graphs and
general group actions, where the
objective is to quantify and break
symmetries using colourings Tymoczko
(2003).

In recent years, renewed interest in
colouring problems has emerged from
their  connections  with  algebraic
structures, representation theory, and
combinatorial enumeration. In particular,

C{n.r} = {a|a:

Because every colouring is defined on the
entire domain [n], each element of Cyy, ) is

naturally interpreted as a full transformation
with domain [n] and codomain [r]. This
interpretation embeds colouring problems into
the theory of full transformation semigroups, a
class of semigroups that has been extensively
studied due to its rich algebraic and
combinatorial structure Howie (1995) and
Umar (1992).

In the special case r =mn, the set Cppy

coincides with the classical full transformation
semigroup 7;, on [n], consisting of all total
functions from [n] to itself under composition.
Thus, €y may be viewed as a generalised

transformation  structure that interpolates
between colouring theory and semigroup
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symmetric  colourings of algebraic
objects such as groups and semigroups
have been investigated for dihedral
groups, Abelian p-groups, quaternion
groups, and elementary Abelian groups,
revealing deep links between group
structure and colouring  behaviour
Phakathi (2016, 2018) and Zelenyuk
(2018, 2021). Despite these advances,
comparatively little attention has been
given to colouring problems viewed
through the lens of full transformation
semigroups, especially for finite chains.
This paper addresses this gap.
Let

[n] = {1,2,...,n}
denote a finite chain of cardinality n,
endowed with its natural linear order, and
let

[r] = {1,2,...,7}
denote a finite set of r colours. A
fullr — colouring of the chain [n] is
defined as a total function
a: [n] = [r]
which assigns exactly one colour to each
element of [n]. The set of all such colourings

is denoted by

[n] = [}

theory, allowing techniques from both areas to

be applied simultaneously.

A basic enumeration result shows that the total

number of full r — colourings of [n] is
[Canl=rm

since each element of [n] can be coloured

independently using any of the r available

colours. While this count is straightforward, it

conceals a rich internal structure that becomes

visible when colourings are classified

according to the number of colours they

actually use.

For a colouring & € Cy 1), the image of « is

defined by

Im(a) = {a(i)| i € [n]},
that is, the set of colours appearing in the colouring. For each integer k with 1 < k < r, we define
Cinr) = {@ € Cippy| lIm(a)| = k}
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the subset of colourings that use exactly k distinct colours. The sets Cypry form a disjoint

partition of C,, ) and provide a natural stratification by image size.

Example. Letn = 3andr = 2.Then (35 consists of 2 3 = 8 colourings. Among these:
(1,1,1),(2,2,2) € Cy3z

since they use exactly one colour, while
(1,1,2),(1,2,1), (2,1,1),(1,2,2),(2,1,2),(2,2,1) € Cy3

since they use both colours. Hence Stirling numbers of the second kind S(n, k),
€132y = 2 and|Cy32| = 6 which count the number of ways to partition an
Each colouring in C(y,  induces a partition n — element set into exactly k nonempty

subsets. After choosing such a partition,

f the chai int ty block - .
of the chain [n] into k nonempty blocks, distinct colours from [r] may be assigned to

where each block consists of elements e o
receiving the same colour. Consequently, the the k blocks in (})k! ways. This yields the
enumeration of Cyr,ry is governed by the formula

Ceury | = (D k! S(n, k)

and summing over all values of k recovers the classical identity
"

pn :Z (Dk!S(n,k)

k=1
This identity highlights the deep connection S, consisting of all permutations of the set
between full colourings and sets partitions and [n], acts naturally on C(,,y by permuting the

has appeared in various forms in modern
enumerative combinatorics.
To analyse recolouring behaviour, we consider a € Cnry, this action is defined by
group actions on Cyy, ry. The symmetric group

(0 - @)(i) = a(o™'(1),i € [n]
This action formalises recolouring induced by relabelling the elements of the chain and is central to
the study of symmetric colourings and equivalence classes under permutations Zelenyuk (2018). For a
given permutation ¢ € S, the associated fixed-point set

Fix(oc) ={a €Cpy)| 0 a = a}

domain of each colouring. For ¢ € §,, and

consists of all colourings invariant under . Example. Let n =3 and ¢ = (123) € 55,
The size of this set depends only on the cycle which has a single cycle. Then Fix (o)
structure of a. If ¢ decomposes into consists of all constant colourings, and hence
k disjoint cycles, then each cycle must be |Fix(o)| = r. In contrast, if ¢ = (1)(2)(3)
assigned a single colour, independently of the is the identity ~ permutation,  then
others, resulting in exactly r* fixed colourings. |Fix(a)| =7r3.
The enumeration of permutations by number Applying Burnsides Lemma yields that the
of cycles is governed by the (unsigned) average number of recolourings of a full r-
Stirling numbers of the first kind c(n, k). colouring under the action of Sy is

1 . n+r—1

EZlF!X(O’H —( N )

TESy

while summing over all permutations gives the total recolouring count

> il ()

TESy
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These formulas demonstrate that recolouring
behaviour is governed by classical binomial
coefficients, despite arising from nontrivial
group actions.
The paper also examines recolourings induced
by the alternating group A4,,, the subgroup of
S, consisting of even permutations. Although
A, has index two in S, its restricted cycle-
type structure leads to subtle but meaningful
deviations  in  recolouring  behaviour.
Computational evidence and tabulated values
suggest that, for many parameter choices, the
average recolouring size under 4,, coincides
with that of S, while in other cases new
numerical patterns emerge. These observations
motivate several conjectures concerning
average fixed-point sizes and total recolouring
counts under the action of 4,,, pointing toward
the existence of previously unrecorded
combinatorial sequences Zelenyuk (2021).

In summary, this work develops a detailed
and unified framework for representing full
colourings of finite chains as transformations,
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stratifying them by image size, and analysing
their recolouring behaviour under symmetric
and alternating group actions. By explicitly
connecting colouring theory, transformation
semigroups, Stirling numbers of both kinds,
and classical binomial identities, the results
extend existing theories of symmetric
colourings and contribute new perspectives to
algebraic combinatorics and semigroup theory.
1. Methods and Materials

This section outlines the mathematical
framework, tools, and techniques used to
derive the results presented in Section 3. The
methodology is grounded in classical
enumerative combinatorics and finite group
actions, drawing on established principles
developed by Burnside (1911), Comtet (1974),
Stanley (2012), and Rotman (1995).

BASIC SET-THEORETIC NOTATION
Definition 2.1 (Finite Chain). For a positive
integer n, the finite chain of length n is the
totally ordered set

[n] = {1,2,...,n}
Definition 2.2 (Colour Set). For a positive integer r, the colour set is defined as
[] = {1,2,...,7}

These conventions are standard in enumerative combinatorics Stanley (2012).

FUNCTIONS AND COLOURINGS

Definition 2.3 (Colouring). A full r-colouring of [n] is a function
a: [n] = [r]

The set of all such colourings is denoted by

Cnry) = {a:[n] = [r]}

Remark 2.1. Throughout this paper,
colourings are treated as functions between
finite sets. This viewpoint allows the direct
application of counting principles and group
actions Stanley (2012).

SET PARTITIONS AND STIRLING

NUMBERS

Definition 2.4 (Set Partition). A partition
of a finite set X is a collection of nonempty,
pairwise disjoint subsets whose union is X.
The subsets are called blocks.

Definition 2.5
(Stirling Numbers of the Second Kind
). For integers n,k = 1, the Stirling number
of the second kind S(n, k) is the number of
ways to partition an n-element set into exactly
k nonempty blocks.
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Stirling numbers of the second kind are
fundamental objects in partition theory and
enumerative combinatorics. Comtet (1974) and
Stanley (2012).
PERMUTATIONS
STRUCTURE
Definition 2.6 (Symmetric Group). The
symmetric group S, is the group of all
permutations of the set [n], with group
operation given by composition.
Definition 2.7 (Cycle Decomposition).
Every permutation o € §,, can be written
uniquely (up to order) as a product of disjoint
cycles. The number of cycles in this
decomposition is denoted by k(a).
This classical result is standard in group
theory. Rotman (1995).

AND CYCLE
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STIRLING NUMBERS OF THE FIRST KIND

Definition 2.8 (Unsigned Stirling Numbers of the First Kind). For integers n,k = 1, let
¢(n, k) denote the number of permutations of [n] with exactly k cycles.

Theorem 2.1

(Cycle Enumeration Identity). For all integers n = 1,

mn

Z cnk)x* =x(x+1Dx+2)...(x+n—1)
k=1
This identity is classical and can be found in Comtet (1974) and Graham et al. (1994).
Definition 2.9 (Group Action). Let G be a group and X a set. A left action of G on X is a map
G xX — X (gx)—g-x,
satisfying:
1. erx=xforallx€X,
2. (gh)-x =g-(h-x)forallg he Gandx € X.
Definition 2.10 (Fixed Points) Rotman (1995). For g € G, the set of fixed points of g is
Fix(g) ={xe X |g-x=x}
These notions are standard in algebra and combinatorics.
Theorem 2.2 (Burnsides Lemma). Let a finite group G act on a finite set X. Then the number of
orbits of the action is given by

1

geG

Burnsides Lemma is a cornerstone of orbit-
counting theory and originates from Burnside
(Burnside,1911)

fixed-point counts for group actions that
depend only on cycle structure remain valid
when restricting from S, to A, Rotman

Definition 2.11 (Alternating Group). The (1995).
alternating group A,, is the subgroup of S, 3. Main Results
consisting of all even permutations of [n]. Throughout this section, Let
Remark 2.5. The parity of a permutation does
not affect its cycle structure. Consequently,

[n] = {1,2,...,n}
denote a finite chain of cardinality n, endowed with its natural linear order, and let

[r] = {1,2,...,1}
and let

C{n.r}za: [n] — [r]
denote the set of all full ¥ — colourings of the finite chain [n].
ENUMERATION OF COLOURINGS
Lemma 3.1 (Total Number of Colourings). For all integers n,r = 1,
|C[n.r}| =7r"
Proof. A colouring @ € Cp,yy is a function that assigns to each element i € [n] exactly one colour
from the set [r].
For a fixed element i, there are exactly » possible choices for e (i). Since the choices for different
elements of [n2] are independent, the total number of colourings is obtained by multiplying the number
of choices at each of the n positions. Hence,

|C{n.r}| =T XrX. . .Xr=r

.

n

1 times
This argument follows directly from the multiplication principle of counting Stanley (2012).

151



S. L. Aliyu et al.

ISSN: 2811-2881

Example 3.1. If n = 3 and r = 2, then each of the three elements may be coloured either 1or2,

giving 23 = 8 distinct colourings.
DECOMPOSITION BY IMAGE SIZE
For1 = k = r, we define

Cynry) = {@ € Ciupy| [Im(a)| = k},
Lemma 3.2 (Enumeration by Image Size). Forl = k <,

Cnry| = (1) 1S B

where 5(n, k) denotes the Stirling number of the second kind.
Proof. Let & € Cymyry - Since a uses exactly k distinct colours, the fibres

a 1(e),

form a partition of [n] into exactly k
nonempty blocks.

The construction of such colouring proceeds in
three independent steps:

1. Partition of the domain. The number
of ways to partition the n-element set [n] into

k nonempty subsets is given by the Stirling
number of the second kind S(n, k).

c € Im(a),

will appear in the colouring. This can be done
in (1) ways.

3. Assignment of colours to blocks.
Once the partition and the set of k colours are
fixed, assign the colours hijectively to the
k blocks. There are k! such assignments.

Since these steps are independent, multiplying
the  number of  possibilities  yields

2. Choice of colours. From the r
available colours, choose the k colours that

Cra | = (Dk!S(n, k)

Example 3.2. Letn=4,r=3,and k=2. Then
3
|Cz{¢.3}‘ = (2) 215(4,2) =327 =42

Thus exactly 42 colourings of a 4 — element set use precisely two colours.
Theorem 3.1 (Stirling Decomposition). Forall n,r = 1,
T

pn :Z (Dk!S(n,k)

k=1
Proof. The sets Cyy ), for 1 < k < r, form a disjoint partition of the set C,, ). Therefore,

T
‘C{n.r}| = Z‘Ck{n.r} |
k=1

Substituting the formula f0r|Ck[n.r] \ from the previous lemma gives
T

pn :Z (Dk!S(n,k)

k=1

SPECIAL CLASSES OF COLOURINGS

Corollary 3.1 (Surjective Colourings). The number of surjective colourings a: [n] — [r]is

r!S(n,r).

Proof. A colouring is surjective if and only if it uses all r colours, i.e., if and only if it lies in Cy.(y 1.

Applying the image-size formula with k = r gives
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‘Cr[n.r]‘ = (D rlS(n,r)

Corollary 3.2 (Monochrematic Colourings). The number of monochromatic colourings of [n]
is 7.

Proof. A monochromatic colouring uses exactly one colour and therefore belongs to Cyy, 1. Using the
formula for|Cy iy |,

Crnm| _( )1l5(n D=r

SYMMETRIC GROUP ACTION
Let S, acton Cy ry by
(0-a)(i) = a(a™1(1)
Lemma 3.3 (Fixed Colourings). If ¢ € §,, has exactly k disjoint cycles, then
|Fix(g)| = r*
Proof. A colouring e is fixed by ¢ if and only if
a(i) = a(a(i))foralli € [n]
Thus ¢ must be constant on each cycle of .
Since ¢ has k disjoint cycles, each cycle may be assigned any one of the r colours
independently of the others. Hence the total number of fixed colourings is r*. This argument is

standard in applications of Burnside’s lemma.

Example 3.3. If & = (12)(345) € S5, then g has two cycles and hence
|Fix(a)| = r?

Orbit Enumeration

Theorem 3.2 (Average Number of Recolourings).

_Z Fix (o) = (n+r — 1)

TES,

Proof. Let c(n, k) denote the unsigned Stirling number of the first kind, which counts permutations of
[n] with exactly k cycles. By the previous lemma,

A classical identity state that
n

Z cn,k)r*=rc+ 1D +2).(r+n-1)
k=1
Comtet (1973). Dividing by n! Yields

_Z Fix ()] = (n-l—r — 1)

TES,

Corollary 3.3 (Number of Orbits). The number of S, -orbits of C(y, 1 is
(n +71r— 1)
n
|Fix(a)|
51 . IFix(@)

TESR

Proof. By Burnside’s lemma [2],

Orbits =
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Applying the previous theorem completes the proof
Conjecture 3.1 (Alternating Group Recolouring Conjecture)
Let A, act on Cyy, -y by composition.

1. Average fixed colourings. For r = 2

(n -I—r—l) fnis odd
1 , ifniso
= Y IFx@)l =4 ) T
|A] n+r—1 , ,

g€A, ( " ) + 6(n,r), if niseven

where & (n,r) is a small correction term arising from the restriction to even permutations.
2. Total number of recolourings. The total number of recolourings under the action of A,

satisfies

. n+r—1
Z |Fix(o)| = IAnl.( N ) +e(n,7r)
TEAy

where e(n, ) accounts for deviations from the symmetric group case and vanishes for many
parameter values.
Table values
The table below shows some computed results of the recolourings
Table 1: Summary of recolourings of Symmetric group §,, action on €

(nr)
rfn |2 3| 4] 5 6 7 8 9 10
1 |1/ 1)1 1 1 1 1 1 1
2 |3/ 4|5 6 7 8 9 10 11
3 10 |15 | 21 | 28 | 36 45 55 66
4 35| 56 | 84 | 120 | 210 220 286
5 126 | 210 | 330 | 495 715 1001
6 462 | 792 | 1287 | 2002 | 3003
7 1716 | 3003 | 5005 | 8008
8 6435 | 11440 | 19448
9 24310 | 43758
10 92378
Sum | 4 | 15 | 56 | 210 | 792 | 3003 | 11440 | 43758 | 167960

Table 2: Summary of recolourings of Alternating group 4,, action €

{10

n/r 2| 3| 4 5 6 7 8 9 10
1 11 1 1 1 1 1 1 1
2 4 5 6 7 8 9 10 11
3 11 |15 | 21 28 36 45 55 66
4 36 | 56 84 120 210 220 286
5 127 | 210 | 330 495 715 1001
6 463 | 792 1287 2002 3003
7 1717 | 3003 5005 8008
8 6436 | 11440 | 19448
9

24311 | 43758

92379
Sum | 5| 16 | 57 | 211 | 793 | 3004 | 11441 | 43759 | 167961

[Eny
o
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Remark 3.1
Computational data in Tables 1 and 2 indicate
that:

e For many values of n and r, the
alternating group average coincides
with the symmetric group average.

A full proof of Conjecture 3.1 remains open.

CONCLUSION

This paper presented a combinatorial
framework for studying

full v — colourings of a finite chain by

viewing colourings as total functions and
analysing them via permutation group actions.
By decomposing the colouring space
according to image size, we obtained
enumeration formulas governed by the Stirling
numbers of the second kind, leading to a
refined decomposition of the classical identity
rn

Under the natural action of the symmetric
group S,,, fixed colourings were characterised

by permutation cycle structure. Applying
Burnsides Lemma and identities for Stirling
numbers of the first kind, we derived explicit
closed-form expressions for both the average
and total number of recolourings, showing that
these quantities reduce to simple binomial
coefficients. Thus, recolouring behaviour
under S, is completely determined.
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